750 B
750 B
1
x(t) = \cos(t) + \sin(\pi t)
\cos(t)
: \omega_1 = 1
, T_1 = 2\pi
\sin(\pi t)
: \omega_2 = \pi
, T_2 = 2
{T_1 \over T_2} = \pi
: Not rational, so x(t)
is aperiodic.
2
x(t) = \cos(t) \cos(2t)
a)
Find the Fourier series
\cos(A)\cos(B) = {1\over2}\left[\cos(A+B) + \cos(A-B)\right]
x(t) = {1\over2}\cos(3t) + {1\over2}\cos(t)
\cos(3t)
: \omega_1 = 3
, T_1 = {2\pi \over 3}
\cos(t)
: \omega_2 = 1
, T_2 = 2\pi
{T_1 \over T_2} = {1\over3}
: Rational
P_x = {\left({1\over2}\right)^2 \over 2} + {\left({1\over2}\right)^2 \over 2} = {1\over8} + {1\over8} = {1\over4}
x(t) = c_0 + 2 \sum_{k=1}^\infty\left[c_k\cos(kt) + d_k\sin(kt)\right]
c_0 = {1\over P} \int\limits_{-P/2}^{P/2} x(t)dt