11 KiB
Homework 1 - Aidan Sharpe
1.
If \vec{A} = 4\hat{x} + 4\hat{y} - 2\hat{z}
and \vec{B} = 3\hat{x} - 1.5\hat{y} + \hat{z}
, find the acute angle between \vec{A}
and \vec{B}
.
Definition of dot product:
\vec{A} \cdot \vec{B} = (A_x B_x)+(A_y B_y) + (A_z B_z) =\lVert \vec{A} \rVert \lVert \vec{B} \rVert \cos(\varphi)
Solve the dot product:
\vec{A} \cdot \vec{B} = (4 \cdot 3) + (4 \cdot (-1.5)) + ((-2) \cdot 1) = 4
Magnitudes of the vectors:
\lVert \vec{A} \rVert = \sqrt{4^2 + 4^2 + (-2)^2} = \sqrt{36} = 6
\lVert \vec{B} \rVert = \sqrt{3^2 + \left(-\frac{3}{2}\right)^2 + 1^2} = \sqrt{\frac{49}{4}} = \frac{7}{2}
By the definition of the dot product:
4 = 6 \cdot \frac{7}{2} \cos(\varphi)
\therefore \cos(\varphi) = \frac{4}{21}
\therefore \varphi = \arccos\left(\frac{4}{21}\right) = 1.379 = 79.02^\circ
2
If \vec{A} = \frac{10}{\rho}\hat{\rho} + 5\hat{\varphi} + 2\hat{z}
and \vec{B} = 5\hat{\rho} + \cos(\varphi)\hat{\varphi} + \rho\hat{z}
, find (a) \vec{A} \cdot \vec{B}
and (b) \vec{A} \times \vec{B}
at x=1
, y=1
, z=1
.
Convert from cartesian to cylidrical:
\rho = \sqrt{x^2 + y^2} = \sqrt{2}
\varphi = \arctan\left(\frac{y}{x}\right) = \frac{\pi}{4}
z = z = 1
Find \vec{A}
and \vec{B}
at x=1
, y=1
, z=1
:
\vec{A} = \frac{10}{\sqrt{2}}\hat{\rho}+5\hat{\varphi}+2\hat{z} = 5\sqrt{2}\hat{\rho}+5\hat{\varphi}+2\hat{z}
\vec{B} = 5\hat{\rho}+\cos\left(\frac{\pi}{4}\right)\hat{\varphi}+\sqrt{2}\hat{z}=5\hat{\rho}+\frac{\sqrt{2}}{2}\hat{\varphi}+\sqrt{2}\hat{z}
a) Find \vec{A} \cdot \vec{B}
\vec{A} \cdot \vec{B} = \left(5\sqrt{2} \cdot 5\right) + \left(5 \cdot \frac{\sqrt{2}}{2}\right) + \left(2 \cdot \sqrt{2}\right) = \frac{59\sqrt{2}}{2}
b) Find \vec{A} \times \vec{B}
\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\rho} & \hat{\varphi} & \hat{z} \\ 5\sqrt{2} & 5 & 2 \\ 5 & \frac{\sqrt{2}}{2} & \sqrt{2} \end{vmatrix} = 4\sqrt{2}\hat{\rho} - 20\hat{z}
3
Two point charges have mass $0.2$g. Two insulating threads of length $1$m are used to suspend the charges from a common point. The gravitational force is 980 \times 10^{-5}\text{N/g}
.
Define \varphi
as the angle between the threads, \alpha
as half of that angle, and \beta
as \frac{\pi}{2} - \alpha
. This way, \alpha
and \beta
make a right triangle with the leg adjacent to \alpha
making a perpendicular bisector of the distance between the charges, r
.
Find the distance, r
:
\frac{r}{2} = (1\text{m})\cos(\beta)
\therefore r = 2\cos(\beta)
By Coulomb's Law, the electric field force on each charge, \vec{F}_e
, is:
\vec{F}_e = \frac{q^2}{4\pi\varepsilon_0 r^2}\hat{x}
Pluggin in for r
,
\vec{F}_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}\hat{x}
The force due to gravity on each charge, \vec{F}_g
, is:
\vec{F}_g = 0.2 \cdot 980\times 10^{-5} = 0.00196(-\hat{y})\text{N}
Assuming static equilibrium:
\sum F_x = 0 = F_{e_x} + F_{T_x} + F_{g_x}
\sum F_y = 0 = F_{e_y} + F_{T_y} + F_{g_y}
Where:
F_{T_x}
is the x-component of the force due to tension in each thread, F_T
.
F_{T_y}
is the y-component of F_T
.
Since F_g
only acts in the \hat{y}
direction, and F_e
only acts in the \hat{x}
direction:
F_{e_x} + F_{T_x} = 0
F_{T_y} + F_{g_y} = 0
Define the components of the tension force F_T
:
F_{T_x} = F_T\cos\left(\frac{\pi}{2} + \alpha\right) = -F_T\cos(\beta)
F_{T_y} = F_T\sin\left(\frac{\pi}{2} + \alpha\right) = F_T\sin(\beta)
Solve for F_T
using equilibrium in the \hat{y}
direction:
F_T\sin(\beta) - 0.00196 = 0
\therefore F_T = \frac{0.00196}{\sin(\beta)}
Plug in F_T
to solve equilibrium in the \hat{x}
direction:
F_e + \left( \frac{0.00196}{\sin(\beta)} \right)(-\cos(\beta)) = 0
\therefore F_e = 0.00196 \cot(\beta)
a) When \varphi = 45^\circ
, solve for the charge, q
:
Since \varphi = \frac{\pi}{4}
, \alpha = \frac{\pi}{8}
, and \beta = \frac{3\pi}{8}
.
Known:
F_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}
F_e = 0.00196\frac{\cos(\beta)}{\sin(\beta)}
Set equal:
\frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)} = 0.00196\cot(\beta)
\therefore q^2 = 16\pi\varepsilon_0\frac{\cos^3(\beta)}{\sin(\beta)}
Plug in for \beta
and solve for q
:
q = \pm \sqrt{16\pi\varepsilon_0(0.00196)\frac{\cos^3\left(\frac{3\pi}{8}\right)}{\sin\left(\frac{3\pi}{8}\right)}} = \pm 2.300\times10^{-7}\text{C}
b) When q=0.5\mu\text{C}
, solve for the angle, \varphi
:
Known:
F_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}
F_e = 0.00196\frac{\cos(\beta)}{\sin(\beta)}
Set equal:
\frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)} = 0.00196\cot(\beta)
Plug in for q
:
\frac{(0.5\times 10^{-6})^2}{16\pi\varepsilon_0(0.00196)} = \frac{\cos^3(\beta)}{\sin(\beta)}
\therefore \frac{\cos^3(\beta)}{\sin(\beta)} = 0.287
\therefore \beta = 0.915
Using \beta
to solve for \varphi
:
\alpha = \frac{\pi}{2} - \beta = 0.656
\varphi = 2\alpha = 1.314 = 75.257^\circ
4
The magnetic field, \vec{B} = B_0(\hat{x} + 2\hat{y} - 4\hat{z})
exists at a point. Find the electric field at that point if the force experienced by a test charge with velocity, \vec{v} = v_0(3\hat{x} - \hat{y} + 2\hat{z})
is 0
.
Lorentz Force Law:
\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}
Since \vec{F}
is 0
:
0 = q\vec{E} + q\vec{v} \times \vec{B}
\therefore q\vec{E} = -q\vec{v} \times \vec{B}
\therefore \vec{E} = -\vec{v} \times \vec{B}
By the definition of the cross product:
-\vec{v} \times \vec{B} = \vec{B} \times \vec{v}
In terms of \vec{E}
:
\vec{E} = \vec{B} \times \vec{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 1 & 2 & -4 \\ 3 & -1 & 2 \end{vmatrix} = -14\hat{y} - 7\hat{z}
5
A circular loop with radius, a
, exists in the x-y plane. If the loop is uniformly charged and has total charge, Q
, determine the $\vec{E}$-field intensity at some point along the axis normal to the loop.
By Coulomb's Law:
\vec{E} = \int \frac{dq}{4\pi\varepsilon_0 r^2}\hat{r}
Calling the distance along the normal axis z
:
r^2 = a^2 + z^2
Along a uniformly charged line, the charge, dq
, at any given point is given by the equation:
dq = \lambda dl
Where:
\lambda
is the linear charge density
The linear charge density, \lambda
is defined as:
\lambda = \frac{Q}{L}
Where:
Q
is the total charge
L
is the total length
For a circular loop with radius, a
, and total charge, Q
:
\lambda = \frac{Q}{2\pi a}
dl = a d\varphi
\therefore dq = \frac{Qd\varphi}{2\pi}
Plugging into Coulomb's Law:
\vec{E} = \int\limits_{0}^{2\pi} \frac{Qd\varphi}{8\pi^2\varepsilon_0(a^2 + z^2)} \hat{r}
\therefore \vec{E} = \frac{Q}{8\pi^2\varepsilon_0(a^2 + z^2)} \int\limits_{0}^{2\pi}\hat{r}d\varphi
Find \hat{r}
in terms of \hat{x}
, \hat{y}
, and \hat{z}
:
\hat{r} = \frac{\vec{a} + \vec{z}}{\sqrt{a^2 + z^2}}
\vec{z} = z\hat{z}
\vec{a} = a\cos{\varphi}\hat{x} + a\sin{\varphi}\hat{y}
Back to Coulomb's Law:
\vec{E} = \frac{Q}{8\pi^2\varepsilon_0(a^2 + z^2)^{(3/2)}} \int\limits_{0}^{2\pi} (a\cos(\varphi)\hat{x} + a\sin(\varphi)\hat{y} + z\hat{z})d\varphi
By components:
E_x = \frac{aQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} \cos(\varphi)d\varphi = 0
E_y = \frac{aQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} \sin(\varphi)d\varphi = 0
E_z = \frac{zQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} d\varphi = \frac{zQ}{4\pi\varepsilon_0(a^2 + z^2)^{3/2}}
Recombining:
\vec{E} = \frac{zQ}{4\pi\varepsilon_0(a^2 + z^2)^{3/2}}\hat{z}
6
Consider a circular ring in the x-y plane with inner radius, a
, outer radius, b
, and uniform charge density, \rho_s
. Find an expression for the $\vec{E}$-field at a point at distance, z
, along the axis normal to the ring.
By Coulomb's Law:
d\vec{E} = \frac{dq}{4\pi\varepsilon_0 r^2}\hat{r}
Calling the radial distance, \rho
:
r^2 = \rho^2 + z^2
For surface charge densities:
dq = \rho_s ds
In cylindrical coordinates:
ds = \rho d\rho d\varphi
Plugging into Coulomb's Law:
\vec{E} = \iint \frac{\rho_s \rho}{4\pi\varepsilon_0(\rho^2 + z^2)}\hat{r}d\rho d\varphi
\hat{r}
is defined as:
\hat{r} = \frac{\vec{\rho} + \vec{z}}{\sqrt{\rho^2 + z^2}}
Where:
\vec{z} = z\hat{z}
\vec{\rho} = \rho\cos(\varphi)\hat{x} + \rho\sin(\varphi)\hat{y}
Splitting \hat{r}
by components:
\hat{r} = \frac{\rho\cos(\varphi)\hat{x} + \rho\sin(\varphi)\hat{y} + z\hat{z}}{\sqrt{\rho^2 + z^2}}
Back to Coulomb's Law:
\vec{E} = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\cos(\varphi)\hat{x} + \rho^2\sin(\varphi)\hat{y} + \rho z\hat{z}}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi
By components:
E_x = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\cos(\varphi)}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = 0
E_y = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\sin(\varphi)}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = 0
E_z = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho z}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = \frac{\rho_s z}{2\varepsilon_0} \left(\frac{1}{\sqrt{z^2 + a^2}} - \frac{1}{\sqrt{z^2 + b^2}}\right)
Recombining:
\vec{E} = \frac{\rho_s z}{2 \varepsilon_0} \left( \frac{1}{\sqrt{z^2 + a^2}} - \frac{1}{\sqrt{z^2 + b^2}} \right) \hat{z}
7
Consider two concentric cylindrical surfaces. The inner having radius, a
, and charge density \rho_s
, and the outer having radius, b
, and charge density -\rho_s
.
By Gauss's Law:
\Phi_E = \frac{Q_{enc}}{\varepsilon_0} = \oint_S \vec{E} \cdot d\vec{A}
The $\vec{E}$-field for a cylindrical surface with radius, \rho
, and length, l
, is given by the equation:
2\pi\rho l E = \frac{Q_{enc}}{\varepsilon_0}
a) For \rho < a
:
Q_{enc} = 0
\therefore E = 0
b) For a < \rho < b
:
Q_{enc} = 2\pi a l\rho_s
Where:
l
is the length of the section of the cylender.
2\pi\rho lE = \frac{2\pi a l \rho_s}{\varepsilon_0}
\therefore E = \frac{a\rho_s}{\rho \varepsilon_0}
c) For \rho > b
:
Q_{enc} = 2\pi l\rho_s(a-b)
2\pi \rho l E = \frac{2\pi l \rho_s(a-b)}{\varepsilon_0}
\therefore E = \frac{\rho_s (a-b)}{\rho \varepsilon_0}
8
Consider an infinite slab of thickness, d
, centered on the origin (x=0
, y=0
, z=0
).
By Gauss's Law:
\Phi_E = \frac{Q_{enc}}{\varepsilon_0} = \oint_S \vec{E} \cdot d\vec{A}
a) Find the strength of the electric field inside the slab (\lvert z \rvert < d/2
):
Q_{enc} = \rho_v lwh
\oint_S \vec{E} \cdot d\vec{A} = E(2lw + 2lh + 2wh)
E = \frac{\rho_v lwh}{2\varepsilon_0(lw + lh + wh)}
Where:
l
is the size of the x dimension of a Gaussian rectangular prism centered on the origin,
w
is the size of the y dimension of that rectangular prism,
h
is the size of the z dimension of that rectangular prism
b) Find the strength of the electric field inside the slab (\lvert z \rvert > d/2
):
Q_{enc} = \frac{\rho_v lwd}{2}
\oint_S \vec{E} \cdot d\vec{A} = E(2lw + 2lh + 2wh)
E = \frac{\rho_v lwd}{4\varepsilon_0 (lw + lh + wh)}
Where:
l
is the size of the x dimension of a Gaussian rectangular prism centered on the origin,
w
is the size of the y dimension of that rectangular prism,
h
is the size of the z dimension of that rectangular prism