1.4 KiB
1.4 KiB
ECOMMS Homework 2 - Aidan Sharpe
Problem 1
import numpy as np
f_c = 1250
f_m = 125
A_c = 10
a = 1
def g(t):
return A_c * (1 + a*(0.2*np.cos(2*np.pi*f_m*t) + 0.5*np.sin(2*np.pi*f_c*t)))
# First derivative of g(t)
def dg_dt(t):
return -0.2*2*f_m*np.pi*A_c*a*np.sin(2*np.pi*f_m*t) \
+ 2*np.pi*0.5*f_c*A_c*np.cos(2*np.pi*f_c*t)
# Second derivative of g(t)
def ddg_dtt(t):
return -0.2*(2*np.pi*f_m)**2*A_c*a*np.cos(2*np.pi*f_m*t) \
- 0.5*(2*np.pi*f_c)**2*A_c*a*np.sin(2*np.pi*f_c*t)
# Use Newton's method to find the maximum of the function
def newton_method(t):
for i in range(10):
t = t - dg_dt(t)/ddg_dtt(t)
print("Newton method:", t, np.max(g(t)))
return np.max(g(t))
def dc_dt(t):
return A_c*a*np.pi*f_c*np.cos(2*np.pi*f_c*t)
# Sample g(t) at the maxima and minima of the carrier signal
def sample_method():
samples = f_c / f_m
n = np.arange(samples)
t = (2*n + 1) / (4*f_c)
t = t[np.argmax(g(t))]
print("Sampling method:", t, g(t))
return t
if __name__ == '__main__':
t_max = sample_method()
A_max = newton_method(t_max)
a_coeff = (A_max - A_c) / A_c
print("Value of a where positive modulation is 90%:", 0.9/a_coeff)
Sampling Method
t_max = 0.0002
, g_max = 16.9754
Newton Method
t_max = 0.000199206
, g_max = 16.9755
Positive modulation is 90% when a=1.2902