5.0 KiB
Homework 6 - Aidan Sharpe
Exercise 1
Consider a solenoid containing two coaxial magnetic rods of radii a
and b
and permeabilities \mu_1 = 2\mu_0
and \mu_2 = 3\mu_0
. If the solenoid has n
turns every d
meters along the axis and carries a steady current, I
.
a)
Find \vec{H}
inside the first rod, between the first and second rod, and outside the second rod.
For a solenoid regardless of magnetic materials:
\vec{H} = {I n \over d}\hat{z}
So for all regions:
\vec{H} = {I n \over d}\hat{z}
b)
Find \vec{B}
inside the three regions.
\vec{B}
relies on magnetic material properties:
\vec{B} = \mu \vec{H}
Therefore:
\vec{B} = \begin{cases} 2\mu_0\vec{H} & \text{In region 1}\\ 3\mu_0\vec{H} & \text{In region 2}\\ \mu_0\vec{H} & \text{In region 3} \end{cases}
c)
\vec{M}
in each region:
By definition:
\vec{M} = \chi_m \vec{H}
\chi_m = \mu_r - 1
Therefore:
\vec{M} = \begin{cases} \vec{H} & \text{In region 1} \\ 2\vec{H} & \text{In region 2} \\ 0 & \text{In region 3} \end{cases}
d)
\vec{J}
in each region:
By definition:
\vec{J}_m = \nabla \times \vec{M}
Since \vec{M}
is both conservative and solenoidal inside the solenoid, for all three regions:
\vec{J}_m = 0
Exercise 2
In a nonmagnetic medium:
E = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{z}
a)
Find \varepsilon_r
and \eta
:
The general form:
\vec{E}(x,t) = E_0\cos(\omega t -\beta x)\hat{z}
\beta = \omega \sqrt{\mu \varepsilon} = 0.8
0.8 = 2\pi\times10^7 \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}
{{\left(0.8 \over 2\pi\times10^7\right)^2} \over \mu_0 \varepsilon_0} = \varepsilon_r
\boxed{\varepsilon_r = 14.566}
\eta = \sqrt{\mu \over \varepsilon} = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r}
\boxed{\eta = 98.275}
b)
Find the average poynting vector
\vec{P}_\text{avg} = {E_0^2 \over 2 \eta}\hat{x} = {4^2 \over 2(98.275)}
\vec{P}_\text{avg} = 0.081
Exercise 3
E = 3\sin(2\pi\times10^7t - 0.4\pi x)\hat{y} + 4\sin(2\pi\times10^7t - 0.4\pi x)\hat{z}
b)
\varepsilon_r = {\left({\beta \over \omega}\right)^2 \over \mu_0 \varepsilon_0} = {\left({0.4\pi\over 2\pi\times10^7}\right)^2 \over \mu_0 \varepsilon_0}
\boxed{\varepsilon_r = 35.941}
a)
\lambda = {v_p \over f}
v_p = {1 \over \sqrt{\mu \varepsilon}} = {1 \over \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}} = 5\times10^7
f = {\omega \over 2\pi} = 10^7
\boxed{\lambda = 5\text{[m]}}
c)
H = {E_0 \over \eta}\sin(\omega t - \beta x)\hat{z} + {E_0' \over \eta}\sin(\omega t - \beta x)\hat{y}
\eta = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r} = 62.85
\boxed{H = 0.0477\sin(2\pi\times10^7t - 0.4\pi x)\hat{z} + 0.0636\sin(2\pi\times10^7t -0.4\pi x)\hat{y}}
Exercise 4
Prove that:
\hat{H}_y = - {\hat{E}_x \over \eta_0}
Starting with a genering electric plane wave in the -\hat{z}
direction:
\vec{E}(z, t) = E_0 \cos(\omega t + \beta_0 z)\hat{x}
We will use Faraday's Law of Induction to convert a measure in the $\vec{E}$-field to a value for the $\vec{B}$-field:
\nabla \times \vec{E} = -{\partial \over \partial t}\vec{B}
Converting from \vec{B}
to \vec{H}
:
\nabla \times \vec{E} = -\mu{\partial \over \partial t} \vec{H}
Assuming free space:
\mu = \mu_0
This gives the final form for Faraday's Law:
\nabla \times \vec{E} = -\mu_0 {\partial \over \partial t} \vec{H}
Evaluating the curl of \vec{E}
:
\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ \|\vec{E}\| & 0 & 0 \end{vmatrix} = {\partial \over \partial z}\|\vec{E}\|\hat{y} - {\partial \over \partial y}\|\vec{E}\|\hat{z}
Since \vec{E}
only varies with respect to z
and t
this can be rewritten as:
\nabla \times \vec{E} = {\partial \over \partial{z}}\|\vec{E}\|\hat{y}
Evaluate the partial derivative:
\nabla \times \vec{E} = -E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y}
Back to Faraday's Law:
-E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y} = -\mu_0{\partial \over \partial t} \vec{H}
Divide out by -\mu_0
:
{\partial \over \partial t}\vec{H} = {E_0 \beta_0 \over \mu_0}\sin(\omega t + \beta_0 z)\hat{y}
Expand out \beta_0
:
\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0}
{\partial \over \partial t}\vec{H} = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\sin(\omega t + \beta_0 z)dt\hat{y}
Integrate both sides with respect to t
:
\vec{H}(z,t) = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\int\sin(\omega t + \beta_0 z)dt \hat{y}
Evaluate the integral:
\vec{H}(z,t) = -{E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0 \omega} \cos(\omega t + \beta_0 z)\hat{y}
Simplifying the fraction:
\vec{H}(z,t) = -E_0 \sqrt{\varepsilon_0 \over \mu_0} \cos(\omega t + \beta_0 z)\hat{y}
Using the definition of \eta_0
:
\eta_0 = \sqrt{\mu_0 \over \varepsilon_0}
\vec{H}(z,t) = -{E_0 \over \eta_0}\cos(\omega t + \beta z)\hat{y}
\therefore \vec{H}(z,t) = -{\|\vec{E}(z,t)\| \over \eta_0}\hat{y}