1.3 KiB
1.3 KiB
EEMAGS Equation Sheet
Curl and Divergence Identities
- The Laplacian: can operate on a scalar or vector field
\nabla \cdot (\nabla f) = \nabla^2 f
\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}
- The curl of a gradient is
0
\nabla \times (\nabla f) = 0
- The gradient of divergence is a scalar
\nabla (\nabla \cdot \vec{f})
- The divergence of curl is
0
\nabla \cdot (\nabla \times \vec{v}) = 0
- Curl of curl
\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}
Maxwell's Equations
Gauss's Law for $\vec{E}$-fields:
\Phi_E =\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0}
\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}
Gauss's Law for $\vec{B}$-fields:
\int \vec{B} \cdot d\vec{s} = 0
\nabla \cdot \vec{B} = 0
Faraday's Law
\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B}
\nabla \times \vec{E} = -\frac{d}{dt}\vec{B}
Ampere's Law
\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) = \mu_0 I_{enc}
\nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}
Work and Voltage
\Delta V = -\int \vec{E} \cdot d\vec{l}
-\nabla V = \vec{E}