1.6 KiB
1.6 KiB
Complex Exponential Fourier Series
Inner product is just Ravi's fancy math way of saying dot product for functions, and orthogonal is his fancy math way of saying perpendicular.
Definition: Orthonormal
V_1
and V_2
are orthonormal if:
V_1 \cdot V_2 = 0
\|V_1\| = \|V_2\| = 1
If \psi_l
and \psi_k
are orthonormal on [a,b]
:
\int\limits_a^b \psi_k(t) \psi_l^*(t)dt = \begin{cases} 1 & k=l \\ 0 & k \ne l \end{cases}
Example
Consider the interval [0,1]
:
\text{Let } \psi_1(t) = 1; t \in [0,1]
\text{Let } \psi_2(t) = \begin{cases} \end{cases}
Fourier Series in Exponential Form
x(t) = \sum_{k=-\infty}^\infty X_k e^{jk\omega_0 t}
T_0 = 1
\omega_0 = 2\pi
x(t) = 1 + \sum_{k=-\infty, k\ne0}^\infty {2 \sin\left({ \pi k \over 2}\right) \over \pi k}e^{2\pi k t}
x(t) = 1 + \sum_{k=-\infty, k\ne0}^\infty {2 \sin\left({\pi k \over 2}\right) \over \pi k} e^{jk2\pi t}
x(t - 0.1) = 1 + \sum_{k=-\infty, k\ne0}^\infty {2 \sin\left({\pi k \over 2}\right) \over \pi k} e^{jk2\pi (t - 0.1)}
Fourier Series in Trigonometric Form
x(t) = c_0 + 2\sum_{k=1}^\infty \left[c_k \cos(k \omega_0 t) + d_k \sin(k \omega_0 t)\right]
Odd Signal Example
A = 1
, T = 2
, T_0 = 2
, \omega_0 = \pi
x(t) = t
x(t) = \sum_k X_k e^{j\pi k t}
X_k = {1\over2} \int\limits_{-1}^1 t e^{-j \pi k t} dt
This gives an imaginary X_k
.
X_0 = {1\over2} \int\limits_{-1}^1 t dt = 0
x(t) = c_0 + 2\sum_{k=1}^\infty c_k \cos(\pi k t) + d_k \sin(\pi k t)
Since it's odd:
c_k = 0
d_k = {1\over2} \int\limits_{-1}^1 t \sin(\pi k t) dt
x_t = 2 \sum_{k=1}^\infty {(-1)^{k+1} \over \pi k} \sin(\pi k t)