Cloud hardware AWS assignment notes
This commit is contained in:
parent
29767107a1
commit
cd559cd401
Binary file not shown.
@ -0,0 +1,42 @@
|
||||
---
|
||||
title: ECE09488 AWS Assignment Notes
|
||||
author: Aidan Sharpe
|
||||
date: April 24th, 2025
|
||||
geometry: margin=1in
|
||||
colorlinks: true
|
||||
---
|
||||
|
||||
Video: [Amazon AI Conclave 2024 Generative AI Keynote | AWS Events](https://www.youtube.com/watch?v=p_CwWdPTdm8&list=PL2yQDdvlhXf8xcKr0-BHEyg_8VB4tWdu1&index=12)
|
||||
|
||||
## Overall vision
|
||||
- Enable easy deployment of generative AI in the cloud
|
||||
- "Drag and drop" foundational models
|
||||
- Make comparing models easy
|
||||
|
||||
## New services
|
||||
- Amazon Bedrock
|
||||
- Model evaluation
|
||||
- Knowledge bases
|
||||
- Agents
|
||||
- Amazon Titan Foundation Models
|
||||
- Titan Text Embeddings
|
||||
- Titan Text Lite
|
||||
- Titan Text Express
|
||||
- Titan Multimodal Embeddings
|
||||
- Titan Image Generator
|
||||
- Amazon Q
|
||||
|
||||
## Use cases
|
||||
- Choose between models from different providers
|
||||
- AI21Labs Jurassic
|
||||
- Amazon Titan
|
||||
- Anthropic Claude
|
||||
- Cohere Command + Embed
|
||||
- Meta Llama 2
|
||||
- Stability AI Stable Diffusion
|
||||
- Stitch different types of models together
|
||||
- Text and images
|
||||
|
||||
## Demos
|
||||
- Demonstrated automatic model evaluation on a specific task type (text summarization) on several different metrics
|
||||
- Demonstrated knowledge bases using text stored in an S3 bucket to give information to models
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user