Cloud hardware AWS assignment notes
This commit is contained in:
parent
29767107a1
commit
cd559cd401
Binary file not shown.
@ -0,0 +1,42 @@
|
|||||||
|
---
|
||||||
|
title: ECE09488 AWS Assignment Notes
|
||||||
|
author: Aidan Sharpe
|
||||||
|
date: April 24th, 2025
|
||||||
|
geometry: margin=1in
|
||||||
|
colorlinks: true
|
||||||
|
---
|
||||||
|
|
||||||
|
Video: [Amazon AI Conclave 2024 Generative AI Keynote | AWS Events](https://www.youtube.com/watch?v=p_CwWdPTdm8&list=PL2yQDdvlhXf8xcKr0-BHEyg_8VB4tWdu1&index=12)
|
||||||
|
|
||||||
|
## Overall vision
|
||||||
|
- Enable easy deployment of generative AI in the cloud
|
||||||
|
- "Drag and drop" foundational models
|
||||||
|
- Make comparing models easy
|
||||||
|
|
||||||
|
## New services
|
||||||
|
- Amazon Bedrock
|
||||||
|
- Model evaluation
|
||||||
|
- Knowledge bases
|
||||||
|
- Agents
|
||||||
|
- Amazon Titan Foundation Models
|
||||||
|
- Titan Text Embeddings
|
||||||
|
- Titan Text Lite
|
||||||
|
- Titan Text Express
|
||||||
|
- Titan Multimodal Embeddings
|
||||||
|
- Titan Image Generator
|
||||||
|
- Amazon Q
|
||||||
|
|
||||||
|
## Use cases
|
||||||
|
- Choose between models from different providers
|
||||||
|
- AI21Labs Jurassic
|
||||||
|
- Amazon Titan
|
||||||
|
- Anthropic Claude
|
||||||
|
- Cohere Command + Embed
|
||||||
|
- Meta Llama 2
|
||||||
|
- Stability AI Stable Diffusion
|
||||||
|
- Stitch different types of models together
|
||||||
|
- Text and images
|
||||||
|
|
||||||
|
## Demos
|
||||||
|
- Demonstrated automatic model evaluation on a specific task type (text summarization) on several different metrics
|
||||||
|
- Demonstrated knowledge bases using text stored in an S3 bucket to give information to models
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user