Finished ECOMMS homework 3
This commit is contained in:
parent
660744cf30
commit
655a0ecfde
@ -90,6 +90,4 @@ Frequency: 1kHz
|
||||
### 3c
|
||||
If the RF waveform appears across a 50$\Omega$ load, determine the average power and the PEP.
|
||||
|
||||
The average power of the signal is:
|
||||
$$\langle s^2(t) \rangle = \frac{1}{T} \int\limits_{-T/2}^{T/2} 500\cos(\omega_c t + 20\cos(\omega_1 t)) dt$$
|
||||
|
||||
The average power and the PEP are the same: $\frac{A_c^2}{2} \times \frac{1}{50} = 2.5$kW.
|
||||
|
Binary file not shown.
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
f_c = 100E+6
|
||||
f_m = 1E3
|
||||
T_c = 1/f_c
|
||||
|
||||
f_s = 1E9
|
||||
T_s = 1/f_s
|
||||
|
||||
A_c = 500
|
||||
D_p = 100
|
||||
D_f = 1E+6
|
||||
|
||||
omega_m = 2*np.pi*f_m
|
||||
omega_c = 2*np.pi*f_c
|
||||
|
||||
# Time samples to 10 seconds at a samplig frequency of 8kHz
|
||||
t = np.arange(0,10*T_c,T_s)
|
||||
m_p = 0.2*np.cos(omega_m * t)
|
||||
|
||||
m_f = -2E-5*omega_m*np.sin(omega_m * t)
|
||||
M_f = 2E-5*np.cos(omega_m*t)
|
||||
theta = D_f * M_f
|
||||
|
||||
# The phase modulated signal
|
||||
s_p = A_c*np.cos(omega_c*t + D_p*m_p)
|
||||
s_f = A_c*np.cos(omega_c*t + theta)
|
||||
|
||||
c = A_c*np.cos(omega_c *t)
|
||||
|
||||
plt.plot(t, s_p, label="Phase Modulated Signal")
|
||||
plt.plot(t, s_p-c)
|
||||
#plt.plot(t, s_f, label="Frequency Modulated Signal")
|
||||
plt.show()
|
BIN
7th-Semester-Fall-2024/ECOMMS/labs/lab1/dft.png
Normal file
BIN
7th-Semester-Fall-2024/ECOMMS/labs/lab1/dft.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
@ -2,10 +2,9 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy as sp
|
||||
|
||||
f_s = 8E3
|
||||
|
||||
f_s = 10
|
||||
T_s = 1/f_s
|
||||
t = np.arange(-5,5,T_s)
|
||||
t = np.arange(0,1+T_s,T_s)
|
||||
|
||||
f = np.linspace(0,f_s,len(t))
|
||||
omega = 2*np.pi*f
|
||||
@ -18,16 +17,9 @@ w = u(t) - u(t-0.6) + u(t-0.7) - u(t-1)
|
||||
W_c = 1j*(np.exp(-1j*omega*0.6) + np.exp(-1j*omega) - np.exp(-1j*omega*0.7) - 1)/omega
|
||||
W_d = sp.fft.fft(w)
|
||||
|
||||
print(W_c[:10])
|
||||
print(W_d[:10])
|
||||
|
||||
|
||||
plt.plot(t,w)
|
||||
plt.stem(f, W_d)
|
||||
plt.xlabel("Frequency (Hz)")
|
||||
plt.show()
|
||||
|
||||
|
||||
plt.subplot(211)
|
||||
plt.plot(W_c)
|
||||
plt.subplot(212)
|
||||
plt.plot(W_d)
|
||||
plt.bar(t, sp.fft.ifft(W_d), T_s, align='edge')
|
||||
plt.xlabel("Time (s)")
|
||||
plt.show()
|
||||
|
BIN
7th-Semester-Fall-2024/ECOMMS/labs/lab1/recovered_bar.png
Normal file
BIN
7th-Semester-Fall-2024/ECOMMS/labs/lab1/recovered_bar.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 9.6 KiB |
Loading…
Reference in New Issue
Block a user