Adversarial-Machine-Learnin.../wiki/Results.md
2024-05-01 01:26:25 -04:00

30 KiB

Experimental Results

Models Trained on Various Filters

NOTE: The results in this section contain an oversight in the defense strategy. While models were trained using different filters, they were all defended from FGSM using a Kuwahara filter.

Model Trained on Unfiltered MNIST Dataset

\epsilon Accuracy
0.05 0.9600
0.10 0.8753
0.15 0.7228
0.20 0.5008
0.25 0.2922
0.30 0.1599

Model Trained on Kuwahara (R=5) Filtered MNIST Dataset

\epsilon Attacked Accuracy Filtered Accuracy Ratio
0.05 0.9605 0.9522 0.9914
0.1 0.8743 0.9031 1.0329
0.15 0.7107 0.8138 1.1451
0.2 0.4876 0.6921 1.4194
0.25 0.2714 0.5350 1.9713
0.3 0.1418 0.3605 2.5423

Model Trained on Gaussian Blurred (K-Size=5x5) MNIST Dataset

\epsilon Attacked Accuracy Filtered Accuracy Ratio
0.05 0.9192 0.9325 1.014
0.10 0.7629 0.8802 1.154
0.15 0.4871 0.7865 1.615
0.20 0.2435 0.6556 2.692
0.25 0.1093 0.5024 4.596
0.30 0.0544 0.3522 6.474

Model Trained on Bilateral Filtered (d=5) MNIST Dataset

\epsilon Attacked Accuracy Filtered Accuracy Ratio
0.05 0.9078 0.9287 1.023
0.10 0.7303 0.8611 1.179
0.15 0.4221 0.7501 1.777
0.20 0.1927 0.6007 3.117
0.25 0.0873 0.4433 5.078
0.30 0.0525 0.3023 5.758

Models Defended with Various Filters

Tabulated Results

\epsilon Unfiltered Kuwahara Bilateral Gaussian Blur Random Noise Snapped Color 1-Bit Plurality
0.00 0.992 0.9066 0.9391 0.9682 0.9911 0.9913 0.9722 0.9889
0.05 0.9600 0.8700 0.8902 0.9271 0.9603 0.9781 0.8409 0.9600
0.10 0.8753 0.8123 0.8133 0.8516 0.8677 0.8818 0.7919 0.8799
0.15 0.7229 0.7328 0.7098 0.7415 0.7153 0.8408 0.7329 0.7879
0.20 0.5008 0.6301 0.5683 0.5983 0.4941 0.7496 0.6794 0.6467
0.25 0.2922 0.5197 0.4381 0.4591 0.2843 0.4301 0.6233 0.4721
0.30 0.1599 0.3981 0.3364 0.3481 0.1584 0.2091 0.5462 0.3312

Plotted Results

Results Plot

Raw Program Output

====== EPSILON: 0.0 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9920 / 10000 = 0.992

Kuwahara Filter Accuracy = 9066 / 10000 = 0.9066

Bilateral Filter Accuracy = 9391 / 10000 = 0.9391

Gaussian Blur Accuracy = 9682 / 10000 = 0.9682

Random Noise Accuracy = 9911 / 10000 = 0.9911

Snapped Color Accuracy = 9913 / 10000 = 0.9913

1 Bit Accuracy = 9722 / 10000 = 0.9722

Plurality Vote Accuracy = 9889 / 10000 = 0.9889

====== EPSILON: 0.025 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9796 / 10000 = 0.9796

Kuwahara Filter Accuracy = 8909 / 10000 = 0.8909

Bilateral Filter Accuracy = 9184 / 10000 = 0.9184

Gaussian Blur Accuracy = 9512 / 10000 = 0.9512

Random Noise Accuracy = 9786 / 10000 = 0.9786

Snapped Color Accuracy = 9823 / 10000 = 0.9823

1 Bit Accuracy = 8644 / 10000 = 0.8644

Plurality Vote Accuracy = 9746 / 10000 = 0.9746

====== EPSILON: 0.05 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9600 / 10000 = 0.96

Kuwahara Filter Accuracy = 8700 / 10000 = 0.87

Bilateral Filter Accuracy = 8902 / 10000 = 0.8902

Gaussian Blur Accuracy = 9271 / 10000 = 0.9271

Random Noise Accuracy = 9587 / 10000 = 0.9587

Snapped Color Accuracy = 9781 / 10000 = 0.9781

1 Bit Accuracy = 8409 / 10000 = 0.8409

Plurality Vote Accuracy = 9602 / 10000 = 0.9602

====== EPSILON: 0.07500000000000001 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9260 / 10000 = 0.926

Kuwahara Filter Accuracy = 8447 / 10000 = 0.8447

Bilateral Filter Accuracy = 8533 / 10000 = 0.8533

Gaussian Blur Accuracy = 8939 / 10000 = 0.8939

Random Noise Accuracy = 9221 / 10000 = 0.9221

Snapped Color Accuracy = 9228 / 10000 = 0.9228

1 Bit Accuracy = 8174 / 10000 = 0.8174

Plurality Vote Accuracy = 9235 / 10000 = 0.9235

====== EPSILON: 0.1 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8753 / 10000 = 0.8753

Kuwahara Filter Accuracy = 8123 / 10000 = 0.8123

Bilateral Filter Accuracy = 8133 / 10000 = 0.8133

Gaussian Blur Accuracy = 8516 / 10000 = 0.8516

Random Noise Accuracy = 8702 / 10000 = 0.8702

Snapped Color Accuracy = 8818 / 10000 = 0.8818

1 Bit Accuracy = 7919 / 10000 = 0.7919

Plurality Vote Accuracy = 8802 / 10000 = 0.8802

====== EPSILON: 0.125 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8104 / 10000 = 0.8104

Kuwahara Filter Accuracy = 7751 / 10000 = 0.7751

Bilateral Filter Accuracy = 7656 / 10000 = 0.7656

Gaussian Blur Accuracy = 7989 / 10000 = 0.7989

Random Noise Accuracy = 8022 / 10000 = 0.8022

Snapped Color Accuracy = 8621 / 10000 = 0.8621

1 Bit Accuracy = 7646 / 10000 = 0.7646

Plurality Vote Accuracy = 8396 / 10000 = 0.8396

====== EPSILON: 0.15000000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 7229 / 10000 = 0.7229

Kuwahara Filter Accuracy = 7328 / 10000 = 0.7328

Bilateral Filter Accuracy = 7098 / 10000 = 0.7098

Gaussian Blur Accuracy = 7415 / 10000 = 0.7415

Random Noise Accuracy = 7129 / 10000 = 0.7129

Snapped Color Accuracy = 8408 / 10000 = 0.8408

1 Bit Accuracy = 7329 / 10000 = 0.7329

Plurality Vote Accuracy = 7879 / 10000 = 0.7879

====== EPSILON: 0.17500000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 6207 / 10000 = 0.6207

Kuwahara Filter Accuracy = 6816 / 10000 = 0.6816

Bilateral Filter Accuracy = 6410 / 10000 = 0.641

Gaussian Blur Accuracy = 6741 / 10000 = 0.6741

Random Noise Accuracy = 6096 / 10000 = 0.6096

Snapped Color Accuracy = 7794 / 10000 = 0.7794

1 Bit Accuracy = 7085 / 10000 = 0.7085

Plurality Vote Accuracy = 7176 / 10000 = 0.7176

====== EPSILON: 0.2 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 5008 / 10000 = 0.5008

Kuwahara Filter Accuracy = 6301 / 10000 = 0.6301

Bilateral Filter Accuracy = 5683 / 10000 = 0.5683

Gaussian Blur Accuracy = 5983 / 10000 = 0.5983

Random Noise Accuracy = 4927 / 10000 = 0.4927

Snapped Color Accuracy = 7496 / 10000 = 0.7496

1 Bit Accuracy = 6794 / 10000 = 0.6794

Plurality Vote Accuracy = 6459 / 10000 = 0.6459

====== EPSILON: 0.225 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 3894 / 10000 = 0.3894

Kuwahara Filter Accuracy = 5773 / 10000 = 0.5773

Bilateral Filter Accuracy = 5003 / 10000 = 0.5003

Gaussian Blur Accuracy = 5243 / 10000 = 0.5243

Random Noise Accuracy = 3828 / 10000 = 0.3828

Snapped Color Accuracy = 5289 / 10000 = 0.5289

1 Bit Accuracy = 6512 / 10000 = 0.6512

Plurality Vote Accuracy = 5421 / 10000 = 0.5421

====== EPSILON: 0.25 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2922 / 10000 = 0.2922

Kuwahara Filter Accuracy = 5197 / 10000 = 0.5197

Bilateral Filter Accuracy = 4381 / 10000 = 0.4381

Gaussian Blur Accuracy = 4591 / 10000 = 0.4591

Random Noise Accuracy = 2855 / 10000 = 0.2855

Snapped Color Accuracy = 4301 / 10000 = 0.4301

1 Bit Accuracy = 6233 / 10000 = 0.6233

Plurality Vote Accuracy = 4716 / 10000 = 0.4716

====== EPSILON: 0.275 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2149 / 10000 = 0.2149

Kuwahara Filter Accuracy = 4594 / 10000 = 0.4594

Bilateral Filter Accuracy = 3836 / 10000 = 0.3836

Gaussian Blur Accuracy = 3998 / 10000 = 0.3998

Random Noise Accuracy = 2101 / 10000 = 0.2101

Snapped Color Accuracy = 3992 / 10000 = 0.3992

1 Bit Accuracy = 5842 / 10000 = 0.5842

Plurality Vote Accuracy = 4110 / 10000 = 0.411

====== EPSILON: 0.30000000000000004 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 1599 / 10000 = 0.1599

Kuwahara Filter Accuracy = 3981 / 10000 = 0.3981

Bilateral Filter Accuracy = 3364 / 10000 = 0.3364

Gaussian Blur Accuracy = 3481 / 10000 = 0.3481

Random Noise Accuracy = 1544 / 10000 = 0.1544

Snapped Color Accuracy = 2091 / 10000 = 0.2091

1 Bit Accuracy = 5462 / 10000 = 0.5462

Plurality Vote Accuracy = 3287 / 10000 = 0.3287

Gaussian Kuwahara Filter with Varying Radius

Raw Program Output

====== EPSILON: 0.0 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9920 / 10000 = 0.992

Gaussian Kuwahara (strength = 1) = 9897 / 10000 = 0.9897

Gaussian Kuwahara (strength = 3) = 9766 / 10000 = 0.9766

Gaussian Kuwahara (strength = 5) = 9066 / 10000 = 0.9066

Gaussian Kuwahara (strength = 7) = 7355 / 10000 = 0.7355

Gaussian Kuwahara (strength = 9) = 5131 / 10000 = 0.5131

====== EPSILON: 0.025 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9796 / 10000 = 0.9796

Gaussian Kuwahara (strength = 1) = 9808 / 10000 = 0.9808

Gaussian Kuwahara (strength = 3) = 9667 / 10000 = 0.9667

Gaussian Kuwahara (strength = 5) = 8909 / 10000 = 0.8909

Gaussian Kuwahara (strength = 7) = 7035 / 10000 = 0.7035

Gaussian Kuwahara (strength = 9) = 4824 / 10000 = 0.4824

====== EPSILON: 0.05 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9600 / 10000 = 0.96

Gaussian Kuwahara (strength = 1) = 9651 / 10000 = 0.9651

Gaussian Kuwahara (strength = 3) = 9547 / 10000 = 0.9547

Gaussian Kuwahara (strength = 5) = 8700 / 10000 = 0.87

Gaussian Kuwahara (strength = 7) = 6713 / 10000 = 0.6713

Gaussian Kuwahara (strength = 9) = 4538 / 10000 = 0.4538

====== EPSILON: 0.07500000000000001 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9260 / 10000 = 0.926

Gaussian Kuwahara (strength = 1) = 9412 / 10000 = 0.9412

Gaussian Kuwahara (strength = 3) = 9334 / 10000 = 0.9334

Gaussian Kuwahara (strength = 5) = 8447 / 10000 = 0.8447

Gaussian Kuwahara (strength = 7) = 6354 / 10000 = 0.6354

Gaussian Kuwahara (strength = 9) = 4260 / 10000 = 0.426

====== EPSILON: 0.1 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8753 / 10000 = 0.8753

Gaussian Kuwahara (strength = 1) = 9035 / 10000 = 0.9035

Gaussian Kuwahara (strength = 3) = 9107 / 10000 = 0.9107

Gaussian Kuwahara (strength = 5) = 8123 / 10000 = 0.8123

Gaussian Kuwahara (strength = 7) = 5970 / 10000 = 0.597

Gaussian Kuwahara (strength = 9) = 3915 / 10000 = 0.3915

====== EPSILON: 0.125 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8104 / 10000 = 0.8104

Gaussian Kuwahara (strength = 1) = 8539 / 10000 = 0.8539

Gaussian Kuwahara (strength = 3) = 8785 / 10000 = 0.8785

Gaussian Kuwahara (strength = 5) = 7751 / 10000 = 0.7751

Gaussian Kuwahara (strength = 7) = 5616 / 10000 = 0.5616

Gaussian Kuwahara (strength = 9) = 3620 / 10000 = 0.362

====== EPSILON: 0.15000000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 7229 / 10000 = 0.7229

Gaussian Kuwahara (strength = 1) = 7925 / 10000 = 0.7925

Gaussian Kuwahara (strength = 3) = 8328 / 10000 = 0.8328

Gaussian Kuwahara (strength = 5) = 7328 / 10000 = 0.7328

Gaussian Kuwahara (strength = 7) = 5236 / 10000 = 0.5236

Gaussian Kuwahara (strength = 9) = 3344 / 10000 = 0.3344

====== EPSILON: 0.17500000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 6207 / 10000 = 0.6207

Gaussian Kuwahara (strength = 1) = 7078 / 10000 = 0.7078

Gaussian Kuwahara (strength = 3) = 7808 / 10000 = 0.7808

Gaussian Kuwahara (strength = 5) = 6816 / 10000 = 0.6816

Gaussian Kuwahara (strength = 7) = 4868 / 10000 = 0.4868

Gaussian Kuwahara (strength = 9) = 3090 / 10000 = 0.309

====== EPSILON: 0.2 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 5008 / 10000 = 0.5008

Gaussian Kuwahara (strength = 1) = 6125 / 10000 = 0.6125

Gaussian Kuwahara (strength = 3) = 7179 / 10000 = 0.7179

Gaussian Kuwahara (strength = 5) = 6301 / 10000 = 0.6301

Gaussian Kuwahara (strength = 7) = 4513 / 10000 = 0.4513

Gaussian Kuwahara (strength = 9) = 2865 / 10000 = 0.2865

====== EPSILON: 0.225 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 3894 / 10000 = 0.3894

Gaussian Kuwahara (strength = 1) = 4979 / 10000 = 0.4979

Gaussian Kuwahara (strength = 3) = 6460 / 10000 = 0.646

Gaussian Kuwahara (strength = 5) = 5773 / 10000 = 0.5773

Gaussian Kuwahara (strength = 7) = 4242 / 10000 = 0.4242

Gaussian Kuwahara (strength = 9) = 2702 / 10000 = 0.2702

====== EPSILON: 0.25 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2922 / 10000 = 0.2922

Gaussian Kuwahara (strength = 1) = 3927 / 10000 = 0.3927

Gaussian Kuwahara (strength = 3) = 5640 / 10000 = 0.564

Gaussian Kuwahara (strength = 5) = 5197 / 10000 = 0.5197

Gaussian Kuwahara (strength = 7) = 3859 / 10000 = 0.3859

Gaussian Kuwahara (strength = 9) = 2493 / 10000 = 0.2493

====== EPSILON: 0.275 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2149 / 10000 = 0.2149

Gaussian Kuwahara (strength = 1) = 3023 / 10000 = 0.3023

Gaussian Kuwahara (strength = 3) = 4761 / 10000 = 0.4761

Gaussian Kuwahara (strength = 5) = 4594 / 10000 = 0.4594

Gaussian Kuwahara (strength = 7) = 3494 / 10000 = 0.3494

Gaussian Kuwahara (strength = 9) = 2354 / 10000 = 0.2354

====== EPSILON: 0.30000000000000004 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 1599 / 10000 = 0.1599

Gaussian Kuwahara (strength = 1) = 2289 / 10000 = 0.2289

Gaussian Kuwahara (strength = 3) = 3839 / 10000 = 0.3839

Gaussian Kuwahara (strength = 5) = 3981 / 10000 = 0.3981

Gaussian Kuwahara (strength = 7) = 3182 / 10000 = 0.3182

Gaussian Kuwahara (strength = 9) = 2232 / 10000 = 0.2232

Mean Kuwahara with Varying Radius

Raw Program Output

====== EPSILON: 0.0 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9920 / 10000 = 0.992

Mean Kuwahara (strength = 1) = 9880 / 10000 = 0.988

Mean Kuwahara (strength = 3) = 7536 / 10000 = 0.7536

Mean Kuwahara (strength = 5) = 3667 / 10000 = 0.3667

Mean Kuwahara (strength = 7) = 1763 / 10000 = 0.1763

Mean Kuwahara (strength = 9) = 1339 / 10000 = 0.1339

====== EPSILON: 0.025 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9796 / 10000 = 0.9796

Mean Kuwahara (strength = 1) = 9795 / 10000 = 0.9795

Mean Kuwahara (strength = 3) = 7359 / 10000 = 0.7359

Mean Kuwahara (strength = 5) = 3496 / 10000 = 0.3496

Mean Kuwahara (strength = 7) = 1710 / 10000 = 0.171

Mean Kuwahara (strength = 9) = 1318 / 10000 = 0.1318

====== EPSILON: 0.05 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9600 / 10000 = 0.96

Mean Kuwahara (strength = 1) = 9650 / 10000 = 0.965

Mean Kuwahara (strength = 3) = 7129 / 10000 = 0.7129

Mean Kuwahara (strength = 5) = 3295 / 10000 = 0.3295

Mean Kuwahara (strength = 7) = 1637 / 10000 = 0.1637

Mean Kuwahara (strength = 9) = 1286 / 10000 = 0.1286

====== EPSILON: 0.07500000000000001 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9260 / 10000 = 0.926

Mean Kuwahara (strength = 1) = 9460 / 10000 = 0.946

Mean Kuwahara (strength = 3) = 6871 / 10000 = 0.6871

Mean Kuwahara (strength = 5) = 3119 / 10000 = 0.3119

Mean Kuwahara (strength = 7) = 1578 / 10000 = 0.1578

Mean Kuwahara (strength = 9) = 1244 / 10000 = 0.1244

====== EPSILON: 0.1 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8753 / 10000 = 0.8753

Mean Kuwahara (strength = 1) = 9160 / 10000 = 0.916

Mean Kuwahara (strength = 3) = 6617 / 10000 = 0.6617

Mean Kuwahara (strength = 5) = 2841 / 10000 = 0.2841

Mean Kuwahara (strength = 7) = 1497 / 10000 = 0.1497

Mean Kuwahara (strength = 9) = 1228 / 10000 = 0.1228

====== EPSILON: 0.125 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8104 / 10000 = 0.8104

Mean Kuwahara (strength = 1) = 8746 / 10000 = 0.8746

Mean Kuwahara (strength = 3) = 6317 / 10000 = 0.6317

Mean Kuwahara (strength = 5) = 2587 / 10000 = 0.2587

Mean Kuwahara (strength = 7) = 1422 / 10000 = 0.1422

Mean Kuwahara (strength = 9) = 1211 / 10000 = 0.1211

====== EPSILON: 0.15000000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 7229 / 10000 = 0.7229

Mean Kuwahara (strength = 1) = 8235 / 10000 = 0.8235

Mean Kuwahara (strength = 3) = 6019 / 10000 = 0.6019

Mean Kuwahara (strength = 5) = 2395 / 10000 = 0.2395

Mean Kuwahara (strength = 7) = 1360 / 10000 = 0.136

Mean Kuwahara (strength = 9) = 1193 / 10000 = 0.1193

====== EPSILON: 0.17500000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 6207 / 10000 = 0.6207

Mean Kuwahara (strength = 1) = 7499 / 10000 = 0.7499

Mean Kuwahara (strength = 3) = 5699 / 10000 = 0.5699

Mean Kuwahara (strength = 5) = 2253 / 10000 = 0.2253

Mean Kuwahara (strength = 7) = 1340 / 10000 = 0.134

Mean Kuwahara (strength = 9) = 1164 / 10000 = 0.1164

====== EPSILON: 0.2 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 5008 / 10000 = 0.5008

Mean Kuwahara (strength = 1) = 6650 / 10000 = 0.665

Mean Kuwahara (strength = 3) = 5420 / 10000 = 0.542

Mean Kuwahara (strength = 5) = 2168 / 10000 = 0.2168

Mean Kuwahara (strength = 7) = 1335 / 10000 = 0.1335

Mean Kuwahara (strength = 9) = 1138 / 10000 = 0.1138

====== EPSILON: 0.225 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 3894 / 10000 = 0.3894

Mean Kuwahara (strength = 1) = 5642 / 10000 = 0.5642

Mean Kuwahara (strength = 3) = 5087 / 10000 = 0.5087

Mean Kuwahara (strength = 5) = 2064 / 10000 = 0.2064

Mean Kuwahara (strength = 7) = 1328 / 10000 = 0.1328

Mean Kuwahara (strength = 9) = 1129 / 10000 = 0.1129

====== EPSILON: 0.25 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2922 / 10000 = 0.2922

Mean Kuwahara (strength = 1) = 4739 / 10000 = 0.4739

Mean Kuwahara (strength = 3) = 4773 / 10000 = 0.4773

Mean Kuwahara (strength = 5) = 1993 / 10000 = 0.1993

Mean Kuwahara (strength = 7) = 1306 / 10000 = 0.1306

Mean Kuwahara (strength = 9) = 1145 / 10000 = 0.1145

====== EPSILON: 0.275 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2149 / 10000 = 0.2149

Mean Kuwahara (strength = 1) = 3638 / 10000 = 0.3638

Mean Kuwahara (strength = 3) = 4370 / 10000 = 0.437

Mean Kuwahara (strength = 5) = 1921 / 10000 = 0.1921

Mean Kuwahara (strength = 7) = 1309 / 10000 = 0.1309

Mean Kuwahara (strength = 9) = 1159 / 10000 = 0.1159

====== EPSILON: 0.30000000000000004 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 1599 / 10000 = 0.1599

Mean Kuwahara (strength = 1) = 2659 / 10000 = 0.2659

Mean Kuwahara (strength = 3) = 3912 / 10000 = 0.3912

Mean Kuwahara (strength = 5) = 1854 / 10000 = 0.1854

Mean Kuwahara (strength = 7) = 1307 / 10000 = 0.1307

Mean Kuwahara (strength = 9) = 1166 / 10000 = 0.1166

Bilateral Filter (Sigma = 50)

Raw Program Output

====== EPSILON: 0.0 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9920 / 10000 = 0.992

Bilateral Filter (strength = 1) = 9887 / 10000 = 0.9887

Bilateral Filter (strength = 3) = 9887 / 10000 = 0.9887

Bilateral Filter (strength = 5) = 9391 / 10000 = 0.9391

Bilateral Filter (strength = 7) = 5584 / 10000 = 0.5584

Bilateral Filter (strength = 9) = 2568 / 10000 = 0.2568

====== EPSILON: 0.025 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9796 / 10000 = 0.9796

Bilateral Filter (strength = 1) = 9809 / 10000 = 0.9809

Bilateral Filter (strength = 3) = 9809 / 10000 = 0.9809

Bilateral Filter (strength = 5) = 9184 / 10000 = 0.9184

Bilateral Filter (strength = 7) = 5198 / 10000 = 0.5198

Bilateral Filter (strength = 9) = 2410 / 10000 = 0.241

====== EPSILON: 0.05 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9600 / 10000 = 0.96

Bilateral Filter (strength = 1) = 9695 / 10000 = 0.9695

Bilateral Filter (strength = 3) = 9695 / 10000 = 0.9695

Bilateral Filter (strength = 5) = 8902 / 10000 = 0.8902

Bilateral Filter (strength = 7) = 4831 / 10000 = 0.4831

Bilateral Filter (strength = 9) = 2245 / 10000 = 0.2245

====== EPSILON: 0.07500000000000001 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9260 / 10000 = 0.926

Bilateral Filter (strength = 1) = 9482 / 10000 = 0.9482

Bilateral Filter (strength = 3) = 9482 / 10000 = 0.9482

Bilateral Filter (strength = 5) = 8533 / 10000 = 0.8533

Bilateral Filter (strength = 7) = 4436 / 10000 = 0.4436

Bilateral Filter (strength = 9) = 2079 / 10000 = 0.2079

====== EPSILON: 0.1 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8753 / 10000 = 0.8753

Bilateral Filter (strength = 1) = 9142 / 10000 = 0.9142

Bilateral Filter (strength = 3) = 9142 / 10000 = 0.9142

Bilateral Filter (strength = 5) = 8133 / 10000 = 0.8133

Bilateral Filter (strength = 7) = 4019 / 10000 = 0.4019

Bilateral Filter (strength = 9) = 1915 / 10000 = 0.1915

====== EPSILON: 0.125 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8104 / 10000 = 0.8104

Bilateral Filter (strength = 1) = 8714 / 10000 = 0.8714

Bilateral Filter (strength = 3) = 8714 / 10000 = 0.8714

Bilateral Filter (strength = 5) = 7656 / 10000 = 0.7656

Bilateral Filter (strength = 7) = 3641 / 10000 = 0.3641

Bilateral Filter (strength = 9) = 1792 / 10000 = 0.1792

====== EPSILON: 0.15000000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 7229 / 10000 = 0.7229

Bilateral Filter (strength = 1) = 8169 / 10000 = 0.8169

Bilateral Filter (strength = 3) = 8169 / 10000 = 0.8169

Bilateral Filter (strength = 5) = 7098 / 10000 = 0.7098

Bilateral Filter (strength = 7) = 3299 / 10000 = 0.3299

Bilateral Filter (strength = 9) = 1681 / 10000 = 0.1681

====== EPSILON: 0.17500000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 6207 / 10000 = 0.6207

Bilateral Filter (strength = 1) = 7477 / 10000 = 0.7477

Bilateral Filter (strength = 3) = 7477 / 10000 = 0.7477

Bilateral Filter (strength = 5) = 6410 / 10000 = 0.641

Bilateral Filter (strength = 7) = 2978 / 10000 = 0.2978

Bilateral Filter (strength = 9) = 1610 / 10000 = 0.161

====== EPSILON: 0.2 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 5008 / 10000 = 0.5008

Bilateral Filter (strength = 1) = 6619 / 10000 = 0.6619

Bilateral Filter (strength = 3) = 6619 / 10000 = 0.6619

Bilateral Filter (strength = 5) = 5683 / 10000 = 0.5683

Bilateral Filter (strength = 7) = 2723 / 10000 = 0.2723

Bilateral Filter (strength = 9) = 1563 / 10000 = 0.1563

====== EPSILON: 0.225 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 3894 / 10000 = 0.3894

Bilateral Filter (strength = 1) = 5767 / 10000 = 0.5767

Bilateral Filter (strength = 3) = 5767 / 10000 = 0.5767

Bilateral Filter (strength = 5) = 5003 / 10000 = 0.5003

Bilateral Filter (strength = 7) = 2476 / 10000 = 0.2476

Bilateral Filter (strength = 9) = 1517 / 10000 = 0.1517

====== EPSILON: 0.25 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2922 / 10000 = 0.2922

Bilateral Filter (strength = 1) = 4922 / 10000 = 0.4922

Bilateral Filter (strength = 3) = 4922 / 10000 = 0.4922

Bilateral Filter (strength = 5) = 4381 / 10000 = 0.4381

Bilateral Filter (strength = 7) = 2288 / 10000 = 0.2288

Bilateral Filter (strength = 9) = 1484 / 10000 = 0.1484

====== EPSILON: 0.275 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2149 / 10000 = 0.2149

Bilateral Filter (strength = 1) = 4133 / 10000 = 0.4133

Bilateral Filter (strength = 3) = 4133 / 10000 = 0.4133

Bilateral Filter (strength = 5) = 3836 / 10000 = 0.3836

Bilateral Filter (strength = 7) = 2126 / 10000 = 0.2126

Bilateral Filter (strength = 9) = 1460 / 10000 = 0.146

====== EPSILON: 0.30000000000000004 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 1599 / 10000 = 0.1599

Bilateral Filter (strength = 1) = 3468 / 10000 = 0.3468

Bilateral Filter (strength = 3) = 3468 / 10000 = 0.3468

Bilateral Filter (strength = 5) = 3364 / 10000 = 0.3364

Bilateral Filter (strength = 7) = 1999 / 10000 = 0.1999

Bilateral Filter (strength = 9) = 1444 / 10000 = 0.1444

Gaussian Blur

====== EPSILON: 0.0 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9920 / 10000 = 0.992

Gaussian Blur (strength = 1) = 9920 / 10000 = 0.992

Gaussian Blur (strength = 3) = 9879 / 10000 = 0.9879

Gaussian Blur (strength = 5) = 9682 / 10000 = 0.9682

Gaussian Blur (strength = 7) = 7731 / 10000 = 0.7731

Gaussian Blur (strength = 9) = 5250 / 10000 = 0.525

====== EPSILON: 0.025 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9796 / 10000 = 0.9796

Gaussian Blur (strength = 1) = 9796 / 10000 = 0.9796

Gaussian Blur (strength = 3) = 9801 / 10000 = 0.9801

Gaussian Blur (strength = 5) = 9512 / 10000 = 0.9512

Gaussian Blur (strength = 7) = 7381 / 10000 = 0.7381

Gaussian Blur (strength = 9) = 4862 / 10000 = 0.4862

====== EPSILON: 0.05 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9600 / 10000 = 0.96

Gaussian Blur (strength = 1) = 9600 / 10000 = 0.96

Gaussian Blur (strength = 3) = 9674 / 10000 = 0.9674

Gaussian Blur (strength = 5) = 9271 / 10000 = 0.9271

Gaussian Blur (strength = 7) = 6922 / 10000 = 0.6922

Gaussian Blur (strength = 9) = 4446 / 10000 = 0.4446

====== EPSILON: 0.07500000000000001 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 9260 / 10000 = 0.926

Gaussian Blur (strength = 1) = 9260 / 10000 = 0.926

Gaussian Blur (strength = 3) = 9460 / 10000 = 0.946

Gaussian Blur (strength = 5) = 8939 / 10000 = 0.8939

Gaussian Blur (strength = 7) = 6427 / 10000 = 0.6427

Gaussian Blur (strength = 9) = 3989 / 10000 = 0.3989

====== EPSILON: 0.1 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8753 / 10000 = 0.8753

Gaussian Blur (strength = 1) = 8753 / 10000 = 0.8753

Gaussian Blur (strength = 3) = 9133 / 10000 = 0.9133

Gaussian Blur (strength = 5) = 8516 / 10000 = 0.8516

Gaussian Blur (strength = 7) = 5881 / 10000 = 0.5881

Gaussian Blur (strength = 9) = 3603 / 10000 = 0.3603

====== EPSILON: 0.125 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 8104 / 10000 = 0.8104

Gaussian Blur (strength = 1) = 8104 / 10000 = 0.8104

Gaussian Blur (strength = 3) = 8690 / 10000 = 0.869

Gaussian Blur (strength = 5) = 7989 / 10000 = 0.7989

Gaussian Blur (strength = 7) = 5278 / 10000 = 0.5278

Gaussian Blur (strength = 9) = 3263 / 10000 = 0.3263

====== EPSILON: 0.15000000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 7229 / 10000 = 0.7229

Gaussian Blur (strength = 1) = 7229 / 10000 = 0.7229

Gaussian Blur (strength = 3) = 8135 / 10000 = 0.8135

Gaussian Blur (strength = 5) = 7415 / 10000 = 0.7415

Gaussian Blur (strength = 7) = 4710 / 10000 = 0.471

Gaussian Blur (strength = 9) = 2968 / 10000 = 0.2968

====== EPSILON: 0.17500000000000002 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 6207 / 10000 = 0.6207

Gaussian Blur (strength = 1) = 6207 / 10000 = 0.6207

Gaussian Blur (strength = 3) = 7456 / 10000 = 0.7456

Gaussian Blur (strength = 5) = 6741 / 10000 = 0.6741

Gaussian Blur (strength = 7) = 4224 / 10000 = 0.4224

Gaussian Blur (strength = 9) = 2683 / 10000 = 0.2683

====== EPSILON: 0.2 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 5008 / 10000 = 0.5008

Gaussian Blur (strength = 1) = 5008 / 10000 = 0.5008

Gaussian Blur (strength = 3) = 6636 / 10000 = 0.6636

Gaussian Blur (strength = 5) = 5983 / 10000 = 0.5983

Gaussian Blur (strength = 7) = 3755 / 10000 = 0.3755

Gaussian Blur (strength = 9) = 2453 / 10000 = 0.2453

====== EPSILON: 0.225 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 3894 / 10000 = 0.3894

Gaussian Blur (strength = 1) = 3894 / 10000 = 0.3894

Gaussian Blur (strength = 3) = 5821 / 10000 = 0.5821

Gaussian Blur (strength = 5) = 5243 / 10000 = 0.5243

Gaussian Blur (strength = 7) = 3359 / 10000 = 0.3359

Gaussian Blur (strength = 9) = 2269 / 10000 = 0.2269

====== EPSILON: 0.25 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2922 / 10000 = 0.2922

Gaussian Blur (strength = 1) = 2922 / 10000 = 0.2922

Gaussian Blur (strength = 3) = 5050 / 10000 = 0.505

Gaussian Blur (strength = 5) = 4591 / 10000 = 0.4591

Gaussian Blur (strength = 7) = 3034 / 10000 = 0.3034

Gaussian Blur (strength = 9) = 2112 / 10000 = 0.2112

====== EPSILON: 0.275 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 2149 / 10000 = 0.2149

Gaussian Blur (strength = 1) = 2149 / 10000 = 0.2149

Gaussian Blur (strength = 3) = 4290 / 10000 = 0.429

Gaussian Blur (strength = 5) = 3998 / 10000 = 0.3998

Gaussian Blur (strength = 7) = 2743 / 10000 = 0.2743

Gaussian Blur (strength = 9) = 1983 / 10000 = 0.1983

====== EPSILON: 0.30000000000000004 ======

Clean (No Filter) Accuracy = 9920 / 10000 = 0.992

Unfiltered Accuracy = 1599 / 10000 = 0.1599

Gaussian Blur (strength = 1) = 1599 / 10000 = 0.1599

Gaussian Blur (strength = 3) = 3648 / 10000 = 0.3648

Gaussian Blur (strength = 5) = 3481 / 10000 = 0.3481

Gaussian Blur (strength = 7) = 2493 / 10000 = 0.2493

Gaussian Blur (strength = 9) = 1884 / 10000 = 0.1884