Finished report and impact statements
This commit is contained in:
parent
a9fcfe6921
commit
fd8fa12e75
9
LICENSE
Normal file
9
LICENSE
Normal file
@ -0,0 +1,9 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024 Aidan Sharpe
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1 +0,0 @@
|
||||
,sharpe,fedora,05.05.2024 19:44,file:///home/sharpe/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4;
|
Binary file not shown.
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -1,18 +1,23 @@
|
||||
# Fdb version 4
|
||||
["biber references"] 1714601358.72507 "references.bcf" "references.bbl" "references" 1714601361.62198 0
|
||||
"references.bcf" 1714601361.57766 107768 b452c12a6c1eb942bd55a0ddcfe08430 "latex"
|
||||
["biber references"] 1714601358.72507 "references.bcf" "references.bbl" "references" 1715216406.76852 0
|
||||
"references.bcf" 1715216406.71291 107768 b452c12a6c1eb942bd55a0ddcfe08430 "pdflatex"
|
||||
"references.bib" 1714600868.95255 2441 f193a65709efc2ed8de9d15b2f878a6c ""
|
||||
(generated)
|
||||
"references.bbl"
|
||||
"references.blg"
|
||||
(rewritten before read)
|
||||
["latex"] 1714601360.98166 "references.tex" "references.dvi" "references" 1714601361.62229 0
|
||||
["pdflatex"] 1715216405.97824 "references.tex" "references.pdf" "references" 1715216406.76885 0
|
||||
"/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm" 1136768653 1324 c910af8c371558dc20f2d7822f66fe64 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmcsc10.tfm" 1136768653 1300 63a6111ee6274895728663cf4b4e7e81 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr12.tfm" 1136768653 1288 655e228510b4c2a1abe905c368440826 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmti10.tfm" 1136768653 1480 aa8e34af0eb6a2941b776984cf1dfdc4 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm" 1136768653 768 1321e9409b4137d6fb428ac9dc956269 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb" 1248133631 32080 340ef9bf63678554ee606688e7b5339d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb" 1248133631 32001 6aeea3afe875097b1eb0da29acd61e28 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1248133631 35752 024fb6c41858982481f6968b5fc26508 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb" 1248133631 37944 359e864bd06cde3b1cf57bb20757fb06 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb" 1248133631 31099 c85edf1dd5b9e826d67c9c7293b6786c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/babel-english/english.ldf" 1496785618 7008 9ff5fdcc865b01beca2b0fe4a46231d4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty" 1676321701 151363 1f5971af3ef874d432e8fb43e0edb71d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/babel/locale/en/babel-en.ini" 1661803479 3966 caeee5a9e5771d4446aa1ca9015ba1b2 ""
|
||||
@ -40,22 +45,23 @@
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty" 1654720880 2671 7e67d78d9b88c845599a85b2d41f2e39 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty" 1655478651 22555 6d8e155cfef6d82c3d5c742fea7c992e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty" 1665067230 13815 760b0c02f691ea230f5359c4e1de23a7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def" 1673989714 36094 f50bbd0ac1e5d89f3bafd820930998cd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def" 1673989714 30429 213676d4c7327a21d91ddaed900e7b81 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty" 1677186603 6107 5cfea8a675c58918b8c04be10261e48c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1675461949 6812 3c152a1c8d562d7b7291c4839b61a5c3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.def" 1284153563 1620 fb1c32b818f2058eca187e5c41dfae77 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.sty" 1284153563 6187 b27afc771af565d3a9ff1ca7d16d0d46 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 ""
|
||||
"/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1689984000 40900 887e0dc8cac988a9e9c574af364cf837 ""
|
||||
"/var/lib/texmf/web2c/pdftex/latex.fmt" 1710776601 7872288 0e576e533964c5ef01dbc8804ddf5a19 ""
|
||||
"references.aux" 1714601361.57566 839 f3c24594d35be9076a835bc418c0c130 "latex"
|
||||
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1705885142.27725 4602615 ac1019cb4c4ba39710c2cf7f752b378d ""
|
||||
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1710776733 7871985 a923b025655ef6c2f0aa4b5ff9642a36 ""
|
||||
"references.aux" 1715216406.71091 839 f3c24594d35be9076a835bc418c0c130 "pdflatex"
|
||||
"references.bbl" 1714601359.61367 11240 932e39044c0f680a4bfd9d34801b993b "biber references"
|
||||
"references.run.xml" 1714601361.57866 2347 0557d215658653956cbc3e52e832328f "latex"
|
||||
"references.run.xml" 1715216406.71391 2347 0557d215658653956cbc3e52e832328f "pdflatex"
|
||||
"references.tex" 1714601352.9257 215 2ec9764fcbe4fad5e1125e85d6f48d78 ""
|
||||
(generated)
|
||||
"references.aux"
|
||||
"references.bcf"
|
||||
"references.dvi"
|
||||
"references.log"
|
||||
"references.pdf"
|
||||
"references.run.xml"
|
||||
(rewritten before read)
|
||||
|
@ -1,7 +1,7 @@
|
||||
PWD /home/sharpe/Documents/Rowan/Rowan-Projects/Adversarial-Machine-Learning-Clinic/references
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /var/lib/texmf/web2c/pdftex/latex.fmt
|
||||
INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt
|
||||
INPUT references.tex
|
||||
OUTPUT references.log
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
@ -222,17 +222,17 @@ INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty
|
||||
@ -277,7 +277,13 @@ INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmti10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmcsc10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm
|
||||
OUTPUT references.dvi
|
||||
OUTPUT references.pdf
|
||||
INPUT /var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map
|
||||
INPUT references.aux
|
||||
INPUT references.run.xml
|
||||
OUTPUT references.run.xml
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb
|
||||
|
@ -1,12 +1,12 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2024.3.18) 1 MAY 2024 18:10
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2024.3.18) 8 MAY 2024 21:00
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
file:line:error style messages enabled.
|
||||
%&-line parsing enabled.
|
||||
**references.tex
|
||||
(./references.tex
|
||||
LaTeX2e <2022-11-01> patch level 1
|
||||
L3 programming layer <2023-02-22>
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
L3 programming layer <2023-02-22> (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
Document Class: article 2022/07/02 v1.4n Standard LaTeX document class
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo
|
||||
File: size10.clo 2022/07/02 v1.4n Standard LaTeX file (size option)
|
||||
@ -22,23 +22,19 @@ File: size10.clo 2022/07/02 v1.4n Standard LaTeX file (size option)
|
||||
\abovecaptionskip=\skip48
|
||||
\belowcaptionskip=\skip49
|
||||
\bibindent=\dimen140
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
|
||||
Package: inputenc 2021/02/14 v1.3d Input encoding file
|
||||
\inpenc@prehook=\toks16
|
||||
\inpenc@posthook=\toks17
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty
|
||||
Package: babel 2023/02/13 3.86 The Babel package
|
||||
\babel@savecnt=\count193
|
||||
\U@D=\dimen141
|
||||
\l@unhyphenated=\language85
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/txtbabel.def)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/txtbabel.def)
|
||||
\bbl@readstream=\read2
|
||||
\bbl@dirlevel=\count194
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel-english/english.ldf
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel-english/english.ldf
|
||||
Language: english 2017/06/06 v3.3r English support from the babel system
|
||||
Package babel Info: Hyphen rules for 'canadian' set to \l@english
|
||||
(babel) (\language0). Reported on input line 102.
|
||||
@ -46,56 +42,41 @@ Package babel Info: Hyphen rules for 'australian' set to \l@ukenglish
|
||||
(babel) (\language26). Reported on input line 105.
|
||||
Package babel Info: Hyphen rules for 'newzealand' set to \l@ukenglish
|
||||
(babel) (\language26). Reported on input line 108.
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/babel/locale/en/babel-english.tex
|
||||
)) (/usr/share/texlive/texmf-dist/tex/generic/babel/locale/en/babel-english.tex
|
||||
Package babel Info: Importing font and identification data for english
|
||||
(babel) from babel-en.ini. Reported on input line 11.
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.sty
|
||||
Package: biblatex 2023/03/05 v3.19 programmable bibliographies (PK/MW)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty
|
||||
Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO
|
||||
)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty
|
||||
Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty
|
||||
Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty
|
||||
Package: iftex 2022/02/03 v1.0f TeX engine tests
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty
|
||||
Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO)
|
||||
)
|
||||
Package pdftexcmds Info: \pdf@primitive is available.
|
||||
Package pdftexcmds Info: \pdf@ifprimitive is available.
|
||||
Package pdftexcmds Info: \pdfdraftmode found.
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/etoolbox/etoolbox.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/etoolbox/etoolbox.sty
|
||||
Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW)
|
||||
\etb@tempcnta=\count195
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
Package: keyval 2022/05/29 v1.15 key=value parser (DPC)
|
||||
\KV@toks@=\toks18
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty
|
||||
Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty
|
||||
Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO)
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.sty
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.sty
|
||||
Package: logreq 2010/08/04 v1.0 xml request logger
|
||||
\lrq@indent=\count196
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.def
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/logreq/logreq.def
|
||||
File: logreq.def 2010/08/04 v1.0 logreq spec v1.0
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty
|
||||
Package: ifthen 2022/04/13 v1.1d Standard LaTeX ifthen package (DPC)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
|
||||
\Urlmuskip=\muskip16
|
||||
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
|
||||
)
|
||||
@ -158,8 +139,7 @@ Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
|
||||
\c@mincompwidth=\count308
|
||||
Package biblatex Info: Trying to load biblatex default data model...
|
||||
Package biblatex Info: ... file 'blx-dm.def' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-dm.def
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-dm.def
|
||||
File: blx-dm.def 2023/03/05 v3.19 biblatex localization (PK/MW)
|
||||
)
|
||||
Package biblatex Info: Trying to load biblatex custom data model...
|
||||
@ -248,14 +228,12 @@ Package biblatex Info: ... file 'biblatex-dm.cfg' not found.
|
||||
\localshorteditorwidth=\skip71
|
||||
Package biblatex Info: Trying to load compatibility code...
|
||||
Package biblatex Info: ... file 'blx-compat.def' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-compat.def
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-compat.def
|
||||
File: blx-compat.def 2023/03/05 v3.19 biblatex compatibility (PK/MW)
|
||||
)
|
||||
Package biblatex Info: Trying to load generic definitions...
|
||||
Package biblatex Info: ... file 'biblatex.def' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.def
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.def
|
||||
File: biblatex.def 2023/03/05 v3.19 biblatex compatibility (PK/MW)
|
||||
\c@textcitecount=\count377
|
||||
\c@textcitetotal=\count378
|
||||
@ -273,21 +251,18 @@ File: biblatex.def 2023/03/05 v3.19 biblatex compatibility (PK/MW)
|
||||
)
|
||||
Package biblatex Info: Trying to load bibliography style 'numeric'...
|
||||
Package biblatex Info: ... file 'numeric.bbx' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/bbx/numeric.bbx
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/bbx/numeric.bbx
|
||||
File: numeric.bbx 2023/03/05 v3.19 biblatex bibliography style (PK/MW)
|
||||
Package biblatex Info: Trying to load bibliography style 'standard'...
|
||||
Package biblatex Info: ... file 'standard.bbx' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/bbx/standard.bbx
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/bbx/standard.bbx
|
||||
File: standard.bbx 2023/03/05 v3.19 biblatex bibliography style (PK/MW)
|
||||
\c@bbx:relatedcount=\count386
|
||||
\c@bbx:relatedtotal=\count387
|
||||
))
|
||||
Package biblatex Info: Trying to load citation style 'numeric'...
|
||||
Package biblatex Info: ... file 'numeric.cbx' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/cbx/numeric.cbx
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/cbx/numeric.cbx
|
||||
File: numeric.cbx 2023/03/05 v3.19 biblatex citation style (PK/MW)
|
||||
Package biblatex Info: Redefining '\cite'.
|
||||
Package biblatex Info: Redefining '\parencite'.
|
||||
@ -303,17 +278,14 @@ Package biblatex Info: Redefining '\smartcites'.
|
||||
)
|
||||
Package biblatex Info: Trying to load configuration file...
|
||||
Package biblatex Info: ... file 'biblatex.cfg' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.cfg
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/biblatex.cfg
|
||||
File: biblatex.cfg
|
||||
)
|
||||
Package biblatex Info: Input encoding 'utf8' detected.
|
||||
Package biblatex Info: Document encoding is UTF8 ....
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
Package: expl3 2023-02-22 L3 programming layer (loader)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
File: l3backend-pdftex.def 2023-01-16 L3 backend support: PDF output (pdfTeX)
|
||||
\l__color_backend_stack_int=\count388
|
||||
\l__pdf_internal_box=\box51
|
||||
@ -322,9 +294,7 @@ Package biblatex Info: ... and expl3
|
||||
(biblatex) 2023-02-22 L3 programming layer (loader)
|
||||
(biblatex) is new enough (at least 2020/04/06),
|
||||
(biblatex) setting 'casechanger=expl3'.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty (/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
Package: xparse 2023-02-02 L3 Experimental document command parser
|
||||
)
|
||||
Package: blx-case-expl3 2023/03/05 v3.19 expl3 case changing code for biblatex
|
||||
@ -354,8 +324,7 @@ LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 8.
|
||||
LaTeX Font Info: ... okay on input line 8.
|
||||
Package biblatex Info: Trying to load language 'english'...
|
||||
Package biblatex Info: ... file 'english.lbx' found.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx
|
||||
File: english.lbx 2023/03/05 v3.19 biblatex localization (PK/MW)
|
||||
)
|
||||
Package biblatex Info: Input encoding 'utf8' detected.
|
||||
@ -365,8 +334,7 @@ Package biblatex Info: Automatic encoding selection.
|
||||
|
||||
Package biblatex Info: Trying to load bibliographic data...
|
||||
Package biblatex Info: ... file 'references.bbl' found.
|
||||
|
||||
(./references.bbl)
|
||||
(./references.bbl)
|
||||
Package biblatex Info: Reference section=0 on input line 8.
|
||||
Package biblatex Info: Reference segment=0 on input line 8.
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
@ -375,8 +343,7 @@ LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <5> on input line 11.
|
||||
[1
|
||||
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
|
||||
(./references.aux)
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] (./references.aux)
|
||||
Package logreq Info: Writing requests to 'references.run.xml'.
|
||||
\openout1 = `references.run.xml'.
|
||||
|
||||
@ -389,11 +356,7 @@ Here is how much of TeX's memory you used:
|
||||
513707 words of font info for 37 fonts, out of 8000000 for 9000
|
||||
1137 hyphenation exceptions out of 8191
|
||||
63i,5n,68p,683b,1725s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></us
|
||||
r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/sha
|
||||
re/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texl
|
||||
ive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texlive/te
|
||||
xmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb>
|
||||
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb>
|
||||
Output written on references.pdf (1 page, 74937 bytes).
|
||||
PDF statistics:
|
||||
33 PDF objects out of 1000 (max. 8388607)
|
||||
|
Binary file not shown.
BIN
references/references.synctex.gz
Normal file
BIN
references/references.synctex.gz
Normal file
Binary file not shown.
Binary file not shown.
@ -0,0 +1,58 @@
|
||||
\relax
|
||||
\abx@aux@refcontext{nty/global//global/global}
|
||||
\abx@aux@cite{0}{ieee3129}
|
||||
\abx@aux@segm{0}{0}{ieee3129}
|
||||
\abx@aux@cite{0}{carlini2017evaluating}
|
||||
\abx@aux@segm{0}{0}{carlini2017evaluating}
|
||||
\abx@aux@cite{0}{szegedy2014intriguing}
|
||||
\abx@aux@segm{0}{0}{szegedy2014intriguing}
|
||||
\abx@aux@cite{0}{goodfellow2015explaining}
|
||||
\abx@aux@segm{0}{0}{goodfellow2015explaining}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2}Approach and Experimental Timeline}{2}{}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Simple block diagram of the proposed pipeline\relax }}{2}{}\protected@file@percent }
|
||||
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
|
||||
\newlabel{fig:concept-overview}{{1}{2}}
|
||||
\abx@aux@cite{0}{ecma404}
|
||||
\abx@aux@segm{0}{0}{ecma404}
|
||||
\abx@aux@cite{0}{yu2019deep}
|
||||
\abx@aux@segm{0}{0}{yu2019deep}
|
||||
\abx@aux@cite{0}{simonyan2014very}
|
||||
\abx@aux@segm{0}{0}{simonyan2014very}
|
||||
\abx@aux@cite{0}{carlini2017evaluating}
|
||||
\abx@aux@segm{0}{0}{carlini2017evaluating}
|
||||
\abx@aux@cite{0}{kuwahara1976processing}
|
||||
\abx@aux@segm{0}{0}{kuwahara1976processing}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3}Constraints}{3}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4}Alternative Filters}{3}{}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The seven selected filters operating on a randomly selected sample from MNIST attacked with FGSM with $\epsilon =0.2$\relax }}{3}{}\protected@file@percent }
|
||||
\newlabel{fig:alternative_filters}{{2}{3}}
|
||||
\newlabel{eqn:rad_odd_strength}{{1}{4}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {5}Results and Evaluation}{4}{}\protected@file@percent }
|
||||
\abx@aux@cite{0}{schapire1989strength}
|
||||
\abx@aux@segm{0}{0}{schapire1989strength}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The highest rank filter and its accuracy for each attack strength and filter strength\relax }}{5}{}\protected@file@percent }
|
||||
\newlabel{fig:filter_performances}{{3}{5}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {6}Conclusions}{5}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {7}Ethical Considerations}{5}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Heath and Safety Considerations}{5}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Social and Cultural Considerations}{6}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Environmental Considerations}{6}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Economic and Financial Considerations}{6}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.5}Generative AI Disclaimer}{6}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {8}Key Takeaways}{6}{}\protected@file@percent }
|
||||
\abx@aux@cite{0}{carlini2017evaluating}
|
||||
\abx@aux@segm{0}{0}{carlini2017evaluating}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {9}Future Work}{7}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {10}Acknowledgements}{7}{}\protected@file@percent }
|
||||
\abx@aux@read@bbl@mdfivesum{9111094E0DE770FBB5CC5AAD69E9088A}
|
||||
\abx@aux@defaultrefcontext{0}{carlini2017evaluating}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{ecma404}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{goodfellow2015explaining}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{ieee3129}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{kuwahara1976processing}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{schapire1989strength}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{simonyan2014very}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{szegedy2014intriguing}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{yu2019deep}{nty/global//global/global}
|
||||
\gdef \@abspage@last{9}
|
@ -0,0 +1,325 @@
|
||||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.2 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated by
|
||||
% biber as required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
|
||||
\refsection{0}
|
||||
\datalist[entry]{nty/global//global/global}
|
||||
\entry{carlini2017evaluating}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=93330b46aec6ec2750a8adced7fef821}{%
|
||||
family={Carlini},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Nicholas},
|
||||
giveni={N\bibinitperiod}}}%
|
||||
{{hash=45a593fbd4e5b2f4d60199ccfdb4fe59}{%
|
||||
family={Wagner},
|
||||
familyi={W\bibinitperiod},
|
||||
given={David},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{fullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{bibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorbibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authornamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorfullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CR}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Towards Evaluating the Robustness of Neural Networks}
|
||||
\field{volume}{1608.04644}
|
||||
\field{year}{2017}
|
||||
\endentry
|
||||
\entry{ecma404}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=e289d8e4f4648ab33fb5d884998637aa}{%
|
||||
family={Crockford},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Douglas},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=9dd40e63e249cc624c24d112ca8c5001}{%
|
||||
family={Morningstar},
|
||||
familyi={M\bibinitperiod},
|
||||
given={Chip},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{fullhash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{bibnamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authorbibnamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authornamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authorfullhash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{month}{12}
|
||||
\field{title}{Standard ECMA-404 The JSON Data Interchange Syntax}
|
||||
\field{year}{2017}
|
||||
\verb{doi}
|
||||
\verb 10.13140/RG.2.2.28181.14560
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{goodfellow2015explaining}{misc}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=d4f74ef4c79f3bb1e51e378184d8850e}{%
|
||||
family={Goodfellow},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ian\bibnamedelima J.},
|
||||
giveni={I\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||||
{{hash=8f128e70084608a2c29c497ebd794f87}{%
|
||||
family={Shlens},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Jonathon},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||||
family={Szegedy},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christian},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{fullhash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{bibnamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authorbibnamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authornamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authorfullhash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\field{sortinit}{G}
|
||||
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{stat.ML}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Explaining and Harnessing Adversarial Examples}
|
||||
\field{volume}{1412.6572}
|
||||
\field{year}{2015}
|
||||
\endentry
|
||||
\entry{ieee3129}{article}{}
|
||||
\field{sortinit}{I}
|
||||
\field{sortinithash}{8d291c51ee89b6cd86bf5379f0b151d8}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{IEEE Std 3129-2023}
|
||||
\field{title}{IEEE Standard for Robustness Testing and Evaluation of Artificial Intelligence (AI)-based Image Recognition Service}
|
||||
\field{year}{2023}
|
||||
\field{pages}{1\bibrangedash 34}
|
||||
\range{pages}{34}
|
||||
\verb{doi}
|
||||
\verb 10.1109/IEEESTD.2023.10141539
|
||||
\endverb
|
||||
\keyw{IEEE Standards;Robustness;Image recording;Testing;Artificial intelligence;Performance evaluation;adversarial attacks;artificial Intelligence-based services;assessment framework;common corruption;IEEE 3129;robustness}
|
||||
\endentry
|
||||
\entry{kuwahara1976processing}{article}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=e077062b201f8062a843696e049f1d4c}{%
|
||||
family={Kuwahara},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Michiyoshi},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
{{hash=6705d5d1e6e98310b2573ef86932db43}{%
|
||||
family={Hachimura},
|
||||
familyi={H\bibinitperiod},
|
||||
given={Kozaburo},
|
||||
giveni={K\bibinitperiod}}}%
|
||||
{{hash=98ef475cc1e3b5074a936fa33f9f9779}{%
|
||||
family={Eiho},
|
||||
familyi={E\bibinitperiod},
|
||||
given={Shigeru},
|
||||
giveni={S\bibinitperiod}}}%
|
||||
{{hash=cc0ad21ec13c2ea4b0298461ba398f71}{%
|
||||
family={Kinoshita},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Masato},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Springer}%
|
||||
}
|
||||
\strng{namehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{fullhash}{3da0266797fdf6e191adf4724303264c}
|
||||
\strng{bibnamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authorbibnamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authornamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authorfullhash}{3da0266797fdf6e191adf4724303264c}
|
||||
\field{sortinit}{K}
|
||||
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{Digital processing of biomedical images}
|
||||
\field{title}{Processing of RI-angiocardiographic images}
|
||||
\field{year}{1976}
|
||||
\field{pages}{187\bibrangedash 202}
|
||||
\range{pages}{16}
|
||||
\endentry
|
||||
\entry{schapire1989strength}{inproceedings}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=bd36be65806a94f14599091fa7ddc7d3}{%
|
||||
family={Schapire},
|
||||
familyi={S\bibinitperiod},
|
||||
given={R.E.},
|
||||
giveni={R\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{fullhash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{bibnamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authorbibnamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authornamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authorfullhash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{30th Annual Symposium on Foundations of Computer Science}
|
||||
\field{title}{The strength of weak learnability}
|
||||
\field{year}{1989}
|
||||
\field{pages}{28\bibrangedash 33}
|
||||
\range{pages}{6}
|
||||
\verb{doi}
|
||||
\verb 10.1109/SFCS.1989.63451
|
||||
\endverb
|
||||
\keyw{Polynomials;Boosting;Laboratories;Computer science;Upper bound;Boolean functions;Filtering}
|
||||
\endentry
|
||||
\entry{simonyan2014very}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=9d16b7284df92c9adaee86c37ab992df}{%
|
||||
family={Simonyan},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Karen},
|
||||
giveni={K\bibinitperiod}}}%
|
||||
{{hash=c72fc39e94030f67717052309266a44d}{%
|
||||
family={Zisserman},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={Andrew},
|
||||
giveni={A\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{fullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{bibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authorbibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authornamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authorfullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{arXiv 1409.1556}
|
||||
\field{month}{09}
|
||||
\field{title}{Very Deep Convolutional Networks for Large-Scale Image Recognition}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
\entry{szegedy2014intriguing}{misc}{}
|
||||
\name{author}{7}{}{%
|
||||
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||||
family={Szegedy},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christian},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
{{hash=e9fec85bbce1b087a6ebefe26e73f7bf}{%
|
||||
family={Zaremba},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={Wojciech},
|
||||
giveni={W\bibinitperiod}}}%
|
||||
{{hash=8d569d1d5b8b5a7836017a98b430f959}{%
|
||||
family={Sutskever},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Ilya},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=c83b564e32475f10dcc91be7e66d3e81}{%
|
||||
family={Bruna},
|
||||
familyi={B\bibinitperiod},
|
||||
given={Joan},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=8bbc4c5d96f205bada839e74e0202146}{%
|
||||
family={Erhan},
|
||||
familyi={E\bibinitperiod},
|
||||
given={Dumitru},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=5d2585c11210cf1d4512e6e0a03ec315}{%
|
||||
family={Goodfellow},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ian},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=a6784304d1cc890b2cb6c6c7f2f3fd76}{%
|
||||
family={Fergus},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Rob},
|
||||
giveni={R\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{fullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\strng{bibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorbibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authornamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorfullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CV}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Intriguing properties of neural networks}
|
||||
\field{volume}{1312.6199}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
\entry{yu2019deep}{misc}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=7d644ffcde545cbf48ce06126689b74c}{%
|
||||
family={Yu},
|
||||
familyi={Y\bibinitperiod},
|
||||
given={Fisher},
|
||||
giveni={F\bibinitperiod}}}%
|
||||
{{hash=e7cf4cb73884dff2f3b4dcbb22c0e27d}{%
|
||||
family={Wang},
|
||||
familyi={W\bibinitperiod},
|
||||
given={Dequan},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=4ce499f8943cac7cba0a73388d289a2e}{%
|
||||
family={Shelhamer},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Evan},
|
||||
giveni={E\bibinitperiod}}}%
|
||||
{{hash=90180e1a30742e0d15328bfe637c2ef4}{%
|
||||
family={Darrell},
|
||||
familyi={D\bibinitperiod},
|
||||
given={Trevor},
|
||||
giveni={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{fullhash}{1ac77bca64069bcc5cab294171bb674f}
|
||||
\strng{bibnamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authorbibnamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authornamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authorfullhash}{1ac77bca64069bcc5cab294171bb674f}
|
||||
\field{sortinit}{Y}
|
||||
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CV}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Deep Layer Aggregation}
|
||||
\field{year}{2019}
|
||||
\verb{eprint}
|
||||
\verb 1707.06484
|
||||
\endverb
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endrefsection
|
||||
\endinput
|
||||
|
@ -0,0 +1,325 @@
|
||||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.2 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated by
|
||||
% biber as required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
|
||||
\refsection{0}
|
||||
\datalist[entry]{nty/global//global/global}
|
||||
\entry{carlini2017evaluating}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=93330b46aec6ec2750a8adced7fef821}{%
|
||||
family={Carlini},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Nicholas},
|
||||
giveni={N\bibinitperiod}}}%
|
||||
{{hash=45a593fbd4e5b2f4d60199ccfdb4fe59}{%
|
||||
family={Wagner},
|
||||
familyi={W\bibinitperiod},
|
||||
given={David},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{fullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{bibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorbibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authornamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorfullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CR}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Towards Evaluating the Robustness of Neural Networks}
|
||||
\field{volume}{1608.04644}
|
||||
\field{year}{2017}
|
||||
\endentry
|
||||
\entry{ecma404}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=e289d8e4f4648ab33fb5d884998637aa}{%
|
||||
family={Crockford},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Douglas},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=9dd40e63e249cc624c24d112ca8c5001}{%
|
||||
family={Morningstar},
|
||||
familyi={M\bibinitperiod},
|
||||
given={Chip},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{fullhash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{bibnamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authorbibnamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authornamehash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\strng{authorfullhash}{de315b7eb28bc313037a1538f8f0ac1b}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{month}{12}
|
||||
\field{title}{Standard ECMA-404 The JSON Data Interchange Syntax}
|
||||
\field{year}{2017}
|
||||
\verb{doi}
|
||||
\verb 10.13140/RG.2.2.28181.14560
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{goodfellow2015explaining}{misc}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=d4f74ef4c79f3bb1e51e378184d8850e}{%
|
||||
family={Goodfellow},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ian\bibnamedelima J.},
|
||||
giveni={I\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||||
{{hash=8f128e70084608a2c29c497ebd794f87}{%
|
||||
family={Shlens},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Jonathon},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||||
family={Szegedy},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christian},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{fullhash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{bibnamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authorbibnamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authornamehash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\strng{authorfullhash}{07b2928cf9addb6cf2d09332e9d7ce18}
|
||||
\field{sortinit}{G}
|
||||
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{stat.ML}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Explaining and Harnessing Adversarial Examples}
|
||||
\field{volume}{1412.6572}
|
||||
\field{year}{2015}
|
||||
\endentry
|
||||
\entry{ieee3129}{article}{}
|
||||
\field{sortinit}{I}
|
||||
\field{sortinithash}{8d291c51ee89b6cd86bf5379f0b151d8}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{IEEE Std 3129-2023}
|
||||
\field{title}{IEEE Standard for Robustness Testing and Evaluation of Artificial Intelligence (AI)-based Image Recognition Service}
|
||||
\field{year}{2023}
|
||||
\field{pages}{1\bibrangedash 34}
|
||||
\range{pages}{34}
|
||||
\verb{doi}
|
||||
\verb 10.1109/IEEESTD.2023.10141539
|
||||
\endverb
|
||||
\keyw{IEEE Standards;Robustness;Image recording;Testing;Artificial intelligence;Performance evaluation;adversarial attacks;artificial Intelligence-based services;assessment framework;common corruption;IEEE 3129;robustness}
|
||||
\endentry
|
||||
\entry{kuwahara1976processing}{article}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=e077062b201f8062a843696e049f1d4c}{%
|
||||
family={Kuwahara},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Michiyoshi},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
{{hash=6705d5d1e6e98310b2573ef86932db43}{%
|
||||
family={Hachimura},
|
||||
familyi={H\bibinitperiod},
|
||||
given={Kozaburo},
|
||||
giveni={K\bibinitperiod}}}%
|
||||
{{hash=98ef475cc1e3b5074a936fa33f9f9779}{%
|
||||
family={Eiho},
|
||||
familyi={E\bibinitperiod},
|
||||
given={Shigeru},
|
||||
giveni={S\bibinitperiod}}}%
|
||||
{{hash=cc0ad21ec13c2ea4b0298461ba398f71}{%
|
||||
family={Kinoshita},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Masato},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Springer}%
|
||||
}
|
||||
\strng{namehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{fullhash}{3da0266797fdf6e191adf4724303264c}
|
||||
\strng{bibnamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authorbibnamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authornamehash}{a037d1ada4691c92e3038b8c35dd1687}
|
||||
\strng{authorfullhash}{3da0266797fdf6e191adf4724303264c}
|
||||
\field{sortinit}{K}
|
||||
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{Digital processing of biomedical images}
|
||||
\field{title}{Processing of RI-angiocardiographic images}
|
||||
\field{year}{1976}
|
||||
\field{pages}{187\bibrangedash 202}
|
||||
\range{pages}{16}
|
||||
\endentry
|
||||
\entry{schapire1989strength}{inproceedings}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=bd36be65806a94f14599091fa7ddc7d3}{%
|
||||
family={Schapire},
|
||||
familyi={S\bibinitperiod},
|
||||
given={R.E.},
|
||||
giveni={R\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{fullhash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{bibnamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authorbibnamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authornamehash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\strng{authorfullhash}{bd36be65806a94f14599091fa7ddc7d3}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{30th Annual Symposium on Foundations of Computer Science}
|
||||
\field{title}{The strength of weak learnability}
|
||||
\field{year}{1989}
|
||||
\field{pages}{28\bibrangedash 33}
|
||||
\range{pages}{6}
|
||||
\verb{doi}
|
||||
\verb 10.1109/SFCS.1989.63451
|
||||
\endverb
|
||||
\keyw{Polynomials;Boosting;Laboratories;Computer science;Upper bound;Boolean functions;Filtering}
|
||||
\endentry
|
||||
\entry{simonyan2014very}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=9d16b7284df92c9adaee86c37ab992df}{%
|
||||
family={Simonyan},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Karen},
|
||||
giveni={K\bibinitperiod}}}%
|
||||
{{hash=c72fc39e94030f67717052309266a44d}{%
|
||||
family={Zisserman},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={Andrew},
|
||||
giveni={A\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{fullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{bibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authorbibnamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authornamehash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\strng{authorfullhash}{25d2f3c4577a6632d37f0126cc781232}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{arXiv 1409.1556}
|
||||
\field{month}{09}
|
||||
\field{title}{Very Deep Convolutional Networks for Large-Scale Image Recognition}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
\entry{szegedy2014intriguing}{misc}{}
|
||||
\name{author}{7}{}{%
|
||||
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||||
family={Szegedy},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christian},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
{{hash=e9fec85bbce1b087a6ebefe26e73f7bf}{%
|
||||
family={Zaremba},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={Wojciech},
|
||||
giveni={W\bibinitperiod}}}%
|
||||
{{hash=8d569d1d5b8b5a7836017a98b430f959}{%
|
||||
family={Sutskever},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Ilya},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=c83b564e32475f10dcc91be7e66d3e81}{%
|
||||
family={Bruna},
|
||||
familyi={B\bibinitperiod},
|
||||
given={Joan},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=8bbc4c5d96f205bada839e74e0202146}{%
|
||||
family={Erhan},
|
||||
familyi={E\bibinitperiod},
|
||||
given={Dumitru},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=5d2585c11210cf1d4512e6e0a03ec315}{%
|
||||
family={Goodfellow},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ian},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=a6784304d1cc890b2cb6c6c7f2f3fd76}{%
|
||||
family={Fergus},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Rob},
|
||||
giveni={R\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{fullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\strng{bibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorbibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authornamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorfullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CV}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Intriguing properties of neural networks}
|
||||
\field{volume}{1312.6199}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
\entry{yu2019deep}{misc}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=7d644ffcde545cbf48ce06126689b74c}{%
|
||||
family={Yu},
|
||||
familyi={Y\bibinitperiod},
|
||||
given={Fisher},
|
||||
giveni={F\bibinitperiod}}}%
|
||||
{{hash=e7cf4cb73884dff2f3b4dcbb22c0e27d}{%
|
||||
family={Wang},
|
||||
familyi={W\bibinitperiod},
|
||||
given={Dequan},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=4ce499f8943cac7cba0a73388d289a2e}{%
|
||||
family={Shelhamer},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Evan},
|
||||
giveni={E\bibinitperiod}}}%
|
||||
{{hash=90180e1a30742e0d15328bfe637c2ef4}{%
|
||||
family={Darrell},
|
||||
familyi={D\bibinitperiod},
|
||||
given={Trevor},
|
||||
giveni={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{fullhash}{1ac77bca64069bcc5cab294171bb674f}
|
||||
\strng{bibnamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authorbibnamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authornamehash}{cc2a6fc8dcf01707f6150fb813b13113}
|
||||
\strng{authorfullhash}{1ac77bca64069bcc5cab294171bb674f}
|
||||
\field{sortinit}{Y}
|
||||
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CV}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Deep Layer Aggregation}
|
||||
\field{year}{2019}
|
||||
\verb{eprint}
|
||||
\verb 1707.06484
|
||||
\endverb
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endrefsection
|
||||
\endinput
|
||||
|
@ -2361,8 +2361,17 @@
|
||||
<bcf:datasource type="file" datatype="bibtex" glob="false">references.bib</bcf:datasource>
|
||||
</bcf:bibdata>
|
||||
<bcf:section number="0">
|
||||
<bcf:citekey order="1" intorder="1">carlini2017evaluating</bcf:citekey>
|
||||
<bcf:citekey order="2" intorder="1">szegedy2014intriguing</bcf:citekey>
|
||||
<bcf:citekey order="1" intorder="1">ieee3129</bcf:citekey>
|
||||
<bcf:citekey order="2" intorder="1">carlini2017evaluating</bcf:citekey>
|
||||
<bcf:citekey order="3" intorder="1">szegedy2014intriguing</bcf:citekey>
|
||||
<bcf:citekey order="4" intorder="1">goodfellow2015explaining</bcf:citekey>
|
||||
<bcf:citekey order="5" intorder="1">ecma404</bcf:citekey>
|
||||
<bcf:citekey order="6" intorder="1">yu2019deep</bcf:citekey>
|
||||
<bcf:citekey order="7" intorder="1">simonyan2014very</bcf:citekey>
|
||||
<bcf:citekey order="8" intorder="1">carlini2017evaluating</bcf:citekey>
|
||||
<bcf:citekey order="9" intorder="1">kuwahara1976processing</bcf:citekey>
|
||||
<bcf:citekey order="10" intorder="1">schapire1989strength</bcf:citekey>
|
||||
<bcf:citekey order="11" intorder="1">carlini2017evaluating</bcf:citekey>
|
||||
</bcf:section>
|
||||
<!-- SORTING TEMPLATES -->
|
||||
<bcf:sortingtemplate name="nty">
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,15 @@
|
||||
[0] Config.pm:307> INFO - This is Biber 2.19
|
||||
[0] Config.pm:310> INFO - Logfile is 'Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.blg'
|
||||
[82] biber:340> INFO - === Wed May 8, 2024, 20:57:47
|
||||
[96] Biber.pm:419> INFO - Reading 'Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf'
|
||||
[158] Biber.pm:979> INFO - Found 9 citekeys in bib section 0
|
||||
[173] Biber.pm:4419> INFO - Processing section 0
|
||||
[183] Biber.pm:4610> INFO - Looking for bibtex file 'references.bib' for section 0
|
||||
[184] bibtex.pm:1713> INFO - LaTeX decoding ...
|
||||
[192] bibtex.pm:1519> INFO - Found BibTeX data source 'references.bib'
|
||||
[291] UCollate.pm:68> INFO - Overriding locale 'en-US' defaults 'normalization = NFD' with 'normalization = prenormalized'
|
||||
[291] UCollate.pm:68> INFO - Overriding locale 'en-US' defaults 'variable = shifted' with 'variable = non-ignorable'
|
||||
[291] Biber.pm:4239> INFO - Sorting list 'nty/global//global/global' of type 'entry' with template 'nty' and locale 'en-US'
|
||||
[291] Biber.pm:4245> INFO - No sort tailoring available for locale 'en-US'
|
||||
[299] bbl.pm:660> INFO - Writing 'Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl' with encoding 'UTF-8'
|
||||
[302] bbl.pm:763> INFO - Output to Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
Binary file not shown.
@ -1,16 +1,28 @@
|
||||
# Fdb version 4
|
||||
["biber report"] 1714874844.81061 "report.bcf" "report.bbl" "report" 1714876309.76733 0
|
||||
"references.bib" 1714874594.23712 2441 f193a65709efc2ed8de9d15b2f878a6c ""
|
||||
"report.bcf" 1714876309.70358 107853 6366a1ee6f048d713d72d124adf482ba "pdflatex"
|
||||
["biber Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar"] 1715216266.79693 "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf" "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl" "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar" 1715216269.40277 0
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf" 1715216269.31768 108499 95a47fd2fc684088b90f67f61dca5899 "pdflatex"
|
||||
"references.bib" 1715049098.74874 2739 5a48774d00665200923a145db75385de ""
|
||||
(generated)
|
||||
"report.bbl"
|
||||
"report.blg"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.blg"
|
||||
(rewritten before read)
|
||||
["pdflatex"] 1714876308.9261 "report.tex" "report.pdf" "report" 1714876309.76778 0
|
||||
["pdflatex"] 1715216267.698 "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.tex" "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.pdf" "Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar" 1715216269.4031 0
|
||||
"../examples/bilateral_filter_eps_0.2.png" 1714589885.31582 19297 a377e84c1b2287303d66a65095c4f66f ""
|
||||
"../examples/bit_depth_eps_0.2.png" 1714589885.31582 17392 8fbda7f34c4a1b766481d7448d6c6a6d ""
|
||||
"../examples/gaussian_blur_eps_0.2.png" 1714589885.31682 20939 b8f00f2cf22ad296bc257cef04fbd329 ""
|
||||
"../examples/gaussian_kuwahara_eps_0.2.png" 1714589885.31682 24613 40ffc963acce3b07a9ae332bbda1b96a ""
|
||||
"../examples/mean_kuwahara_eps_0.2.png" 1714589885.31682 22802 40baccf677bc3568b40aa6cc2e8129fa ""
|
||||
"../examples/random_noise_eps_0.2.png" 1714589885.31682 24314 c5738d11c496c013f543d0ceca6f4c76 ""
|
||||
"../examples/threshold_eps_0.2.png" 1714589885.31682 17748 16fe06b182d4b12cd0ff0db1f22818cc ""
|
||||
"../examples/unfiltered_eps_0.2.png" 1714589885.31782 17055 9bd4320ffca5bddf882ef20a12722551 ""
|
||||
"../poster/Concept.png" 1714589885.34182 49562 1f25e2373f82dec47edf226266717baf ""
|
||||
"../results/CIFAR-10_FGSM_3d.png" 1714589885.68882 171512 62693c4d9adfd475017080143dadb6c4 ""
|
||||
"../results/MNIST_FGSM_3d_new.png" 1714589885.70382 174972 e032c9953482469a5639e79b7085256e ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm" 1136768653 1328 c834bbb027764024c09d3d2bf908b5f0 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm" 1136768653 1324 c910af8c371558dc20f2d7822f66fe64 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx9.tfm" 1136768653 1328 5442e22a7072966dbaf88ca900acf3f0 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmcsc10.tfm" 1136768653 1300 63a6111ee6274895728663cf4b4e7e81 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmmi12.tfm" 1136768653 1524 4414a8315f39513458b80dfc63bff03a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm" 1136768653 1512 f21f83efb36853c0b70002322c1ab3ad ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmmi8.tfm" 1136768653 1520 eccf95517727cb11801f4f1aee3a21b4 ""
|
||||
@ -23,13 +35,22 @@
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm" 1136768653 1116 933a60c408fc0a863a92debe84b2d294 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm" 1136768653 1120 8b7d695260f3cff42e636090a8002094 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmti10.tfm" 1136768653 1480 aa8e34af0eb6a2941b776984cf1dfdc4 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm" 1136768653 768 1321e9409b4137d6fb428ac9dc956269 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb" 1248133631 34811 78b52f49e893bcba91bd7581cdc144c0 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb" 1248133631 32080 340ef9bf63678554ee606688e7b5339d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb" 1248133631 32298 c6d25bb16d1eac01ebdc6d7084126a1e ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb" 1248133631 32001 6aeea3afe875097b1eb0da29acd61e28 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb" 1248133631 36299 5f9df58c2139e7edcf37c8fca4bd384d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb" 1248133631 36281 c355509802a035cadc5f15869451dcee ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1248133631 35752 024fb6c41858982481f6968b5fc26508 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb" 1248133631 32722 d7379af29a190c3f453aba36302ff5a9 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb" 1248133631 32362 179c33bbf43f19adbb3825bb4e36e57a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb" 1248133631 32762 224316ccc9ad3ca0423a14971cfa7fc1 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb" 1248133631 33993 9b89b85fd2d9df0482bd47194d1d3bf3 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb" 1248133631 32569 5e5ddc8df908dea60932f3c484a54c0d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb" 1248133631 32716 08e384dc442464e7285e891af9f45947 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb" 1248133631 37944 359e864bd06cde3b1cf57bb20757fb06 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb" 1248133631 31099 c85edf1dd5b9e826d67c9c7293b6786c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1689984000 71627 94eb9990bed73c364d7f53f960cc8c5b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty" 1644112042 7237 bdd120a32c8fdb4b433cf9ca2e7cd98a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty" 1572645307 1057 525c2192b5febbd8c1f662c9468335bb ""
|
||||
@ -49,6 +70,9 @@
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/biblatex/blx-dm.def" 1643926307 32455 8d3e554836db11aab80a8e11be62e1b1 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/biblatex/cbx/numeric.cbx" 1678141846 4629 cda468e8a0b1cfa0f61872e171037a4b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx" 1643926307 39965 48ce9ce3350aba9457f1020b1deba5cf ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty" 1678653221 55778 14d5c99aa26410e440820bb9ea5b8b3a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty" 1678653221 71836 1a735454ad10692452eb2f2fc37f3865 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty" 1678653221 12462 ecf33913ce1e8012075d24e1f47f0d9b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/etoolbox/etoolbox.sty" 1601931149 46845 3b58f70c6e861a13d927bff09d35ecbc ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/float/float.sty" 1137110151 6749 16d2656a1984957e674b149555f1ea1d ""
|
||||
@ -71,16 +95,16 @@
|
||||
"/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1689984000 40900 887e0dc8cac988a9e9c574af364cf837 ""
|
||||
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1705885142.27725 4602615 ac1019cb4c4ba39710c2cf7f752b378d ""
|
||||
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1710776733 7871985 a923b025655ef6c2f0aa4b5ff9642a36 ""
|
||||
"report.aux" 1714876309.70158 567 bee4dabef9dba08dcbe8e7d154ab2fc2 "pdflatex"
|
||||
"report.bbl" 1714874845.61948 3835 5af852cf1739d5fee51b58af196d487d "biber report"
|
||||
"report.run.xml" 1714876309.70358 2319 1dbeae9c91c70510d621aca3b4772e83 "pdflatex"
|
||||
"report.tex" 1714876308.80759 565 6942717bff171e36598c2f34f1e79b17 ""
|
||||
"report.toc" 1714876309.70458 59 22baffca5cdf91cdea4b6faccfdb9088 "pdflatex"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux" 1715216269.31568 4132 6743685263894671c0aa2ccde3f16fa2 "pdflatex"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl" 1715216267.67469 12728 9111094e0de770fbb5cc5aad69e9088a "biber Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml" 1715216269.31768 2809 f4f54a2692c91e06b589c996b2bb321b "pdflatex"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.tex" 1715215108.46121 21144 12f80f3fdb285a7029a4f6a86e4e569d ""
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc" 1715216269.31768 1056 ffb6043435a176e7044172b0eaef5e7d "pdflatex"
|
||||
(generated)
|
||||
"report.aux"
|
||||
"report.bcf"
|
||||
"report.log"
|
||||
"report.pdf"
|
||||
"report.run.xml"
|
||||
"report.toc"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.log"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.pdf"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml"
|
||||
"Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc"
|
||||
(rewritten before read)
|
@ -2,8 +2,8 @@ PWD /home/sharpe/Documents/Rowan/Rowan-Projects/Adversarial-Machine-Learning-Cli
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt
|
||||
INPUT report.tex
|
||||
OUTPUT report.log
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.tex
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.log
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
@ -302,10 +302,45 @@ INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT ./report.aux
|
||||
INPUT report.aux
|
||||
INPUT report.aux
|
||||
OUTPUT report.aux
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
INPUT ./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
@ -328,13 +363,13 @@ INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/biblatex/lbx/english.lbx
|
||||
OUTPUT report.bcf
|
||||
INPUT report.bbl
|
||||
INPUT ./report.bbl
|
||||
INPUT report.bbl
|
||||
INPUT ./report.bbl
|
||||
INPUT ./report.bbl
|
||||
INPUT report.bbl
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT ./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT ./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT ./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr17.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr12.tfm
|
||||
@ -346,25 +381,91 @@ INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmmi6.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmsy10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmsy8.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmsy6.tfm
|
||||
OUTPUT report.pdf
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.pdf
|
||||
INPUT /var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr12.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm
|
||||
INPUT ./report.toc
|
||||
INPUT report.toc
|
||||
INPUT report.toc
|
||||
INPUT ./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm
|
||||
OUTPUT report.toc
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr9.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx9.tfm
|
||||
INPUT ../poster/Concept.png
|
||||
INPUT ../poster/Concept.png
|
||||
INPUT ../poster/Concept.png
|
||||
INPUT ../poster/Concept.png
|
||||
INPUT ../poster/Concept.png
|
||||
INPUT ../examples/unfiltered_eps_0.2.png
|
||||
INPUT ../examples/unfiltered_eps_0.2.png
|
||||
INPUT ../examples/unfiltered_eps_0.2.png
|
||||
INPUT ../examples/unfiltered_eps_0.2.png
|
||||
INPUT ../examples/unfiltered_eps_0.2.png
|
||||
INPUT ../examples/bit_depth_eps_0.2.png
|
||||
INPUT ../examples/bit_depth_eps_0.2.png
|
||||
INPUT ../examples/bit_depth_eps_0.2.png
|
||||
INPUT ../examples/bit_depth_eps_0.2.png
|
||||
INPUT ../examples/bit_depth_eps_0.2.png
|
||||
INPUT ../examples/gaussian_blur_eps_0.2.png
|
||||
INPUT ../examples/gaussian_blur_eps_0.2.png
|
||||
INPUT ../examples/gaussian_blur_eps_0.2.png
|
||||
INPUT ../examples/gaussian_blur_eps_0.2.png
|
||||
INPUT ../examples/gaussian_blur_eps_0.2.png
|
||||
INPUT ../examples/gaussian_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/gaussian_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/gaussian_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/gaussian_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/gaussian_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/mean_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/mean_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/mean_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/mean_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/mean_kuwahara_eps_0.2.png
|
||||
INPUT ../examples/random_noise_eps_0.2.png
|
||||
INPUT ../examples/random_noise_eps_0.2.png
|
||||
INPUT ../examples/random_noise_eps_0.2.png
|
||||
INPUT ../examples/random_noise_eps_0.2.png
|
||||
INPUT ../examples/random_noise_eps_0.2.png
|
||||
INPUT ../examples/bilateral_filter_eps_0.2.png
|
||||
INPUT ../examples/bilateral_filter_eps_0.2.png
|
||||
INPUT ../examples/bilateral_filter_eps_0.2.png
|
||||
INPUT ../examples/bilateral_filter_eps_0.2.png
|
||||
INPUT ../examples/bilateral_filter_eps_0.2.png
|
||||
INPUT ../examples/threshold_eps_0.2.png
|
||||
INPUT ../examples/threshold_eps_0.2.png
|
||||
INPUT ../examples/threshold_eps_0.2.png
|
||||
INPUT ../examples/threshold_eps_0.2.png
|
||||
INPUT ../examples/threshold_eps_0.2.png
|
||||
INPUT ../results/MNIST_FGSM_3d_new.png
|
||||
INPUT ../results/MNIST_FGSM_3d_new.png
|
||||
INPUT ../results/MNIST_FGSM_3d_new.png
|
||||
INPUT ../results/MNIST_FGSM_3d_new.png
|
||||
INPUT ../results/MNIST_FGSM_3d_new.png
|
||||
INPUT ../results/CIFAR-10_FGSM_3d.png
|
||||
INPUT ../results/CIFAR-10_FGSM_3d.png
|
||||
INPUT ../results/CIFAR-10_FGSM_3d.png
|
||||
INPUT ../results/CIFAR-10_FGSM_3d.png
|
||||
INPUT ../results/CIFAR-10_FGSM_3d.png
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmti10.tfm
|
||||
INPUT report.aux
|
||||
INPUT report.run.xml
|
||||
OUTPUT report.run.xml
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmcsc10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmtt10.tfm
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux
|
||||
INPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml
|
||||
OUTPUT Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb
|
@ -1,10 +1,10 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2024.3.18) 4 MAY 2024 22:31
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2024.3.18) 8 MAY 2024 20:57
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
file:line:error style messages enabled.
|
||||
%&-line parsing enabled.
|
||||
**report.tex
|
||||
(./report.tex
|
||||
**Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.tex
|
||||
(./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.tex
|
||||
LaTeX2e <2022-11-01> patch level 1
|
||||
L3 programming layer <2023-02-22> (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
|
||||
Document Class: article 2022/07/02 v1.4n Standard LaTeX document class
|
||||
@ -315,38 +315,61 @@ Package biblatex Info: ... and expl3
|
||||
Package: xparse 2023-02-02 L3 Experimental document command parser
|
||||
)
|
||||
Package: blx-case-expl3 2023/03/05 v3.19 expl3 case changing code for biblatex
|
||||
))
|
||||
\@quotelevel=\count391
|
||||
\@quotereset=\count392
|
||||
(./report.aux)
|
||||
\openout1 = `report.aux'.
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
|
||||
Package: caption 2023/03/12 v3.6j Customizing captions (AR)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
|
||||
Package: caption3 2023/03/12 v2.4 caption3 kernel (AR)
|
||||
\caption@tempdima=\dimen151
|
||||
\captionmargin=\dimen152
|
||||
\caption@leftmargin=\dimen153
|
||||
\caption@rightmargin=\dimen154
|
||||
\caption@width=\dimen155
|
||||
\caption@indent=\dimen156
|
||||
\caption@parindent=\dimen157
|
||||
\caption@hangindent=\dimen158
|
||||
Package caption Info: Standard document class detected.
|
||||
)
|
||||
\c@caption@flags=\count391
|
||||
\c@continuedfloat=\count392
|
||||
Package caption Info: float package is loaded.
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/caption/subcaption.sty
|
||||
Package: subcaption 2023/02/19 v1.6 Sub-captions (AR)
|
||||
Package caption Info: New subtype `subfigure' on input line 239.
|
||||
\c@subfigure=\count393
|
||||
Package caption Info: New subtype `subtable' on input line 239.
|
||||
\c@subtable=\count394
|
||||
)
|
||||
\@quotelevel=\count395
|
||||
\@quotereset=\count396
|
||||
(./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux)
|
||||
\openout1 = `Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux'.
|
||||
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 13.
|
||||
LaTeX Font Info: ... okay on input line 13.
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 15.
|
||||
LaTeX Font Info: ... okay on input line 15.
|
||||
(/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
[Loading MPS to PDF converter (version 2006.09.02).]
|
||||
\scratchcounter=\count393
|
||||
\scratchdimen=\dimen151
|
||||
\scratchcounter=\count397
|
||||
\scratchdimen=\dimen159
|
||||
\scratchbox=\box54
|
||||
\nofMPsegments=\count394
|
||||
\nofMParguments=\count395
|
||||
\nofMPsegments=\count398
|
||||
\nofMParguments=\count399
|
||||
\everyMPshowfont=\toks20
|
||||
\MPscratchCnt=\count396
|
||||
\MPscratchDim=\dimen152
|
||||
\MPnumerator=\count397
|
||||
\makeMPintoPDFobject=\count398
|
||||
\MPscratchCnt=\count400
|
||||
\MPscratchDim=\dimen160
|
||||
\MPnumerator=\count401
|
||||
\makeMPintoPDFobject=\count402
|
||||
\everyMPtoPDFconversion=\toks21
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf
|
||||
@ -396,43 +419,108 @@ File: english.lbx 2023/03/05 v3.19 biblatex localization (PK/MW)
|
||||
Package biblatex Info: Input encoding 'utf8' detected.
|
||||
Package biblatex Info: Automatic encoding selection.
|
||||
(biblatex) Assuming data encoding 'utf8'.
|
||||
\openout3 = `report.bcf'.
|
||||
\openout3 = `Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf'.
|
||||
|
||||
Package biblatex Info: Trying to load bibliographic data...
|
||||
Package biblatex Info: ... file 'report.bbl' found.
|
||||
(./report.bbl)
|
||||
Package biblatex Info: Reference section=0 on input line 13.
|
||||
Package biblatex Info: Reference segment=0 on input line 13.
|
||||
Package biblatex Info: ... file 'Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl' found.
|
||||
(./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl)
|
||||
Package biblatex Info: Reference section=0 on input line 15.
|
||||
Package biblatex Info: Reference segment=0 on input line 15.
|
||||
Package caption Info: Begin \AtBeginDocument code.
|
||||
Package caption Info: End \AtBeginDocument code.
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <12> on input line 15.
|
||||
(Font) <12> on input line 17.
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <8> on input line 15.
|
||||
(Font) <8> on input line 17.
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <6> on input line 15.
|
||||
(Font) <6> on input line 17.
|
||||
[1
|
||||
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] (./report.toc)
|
||||
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] (./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <7> on input line 8.
|
||||
LaTeX Font Info: External font `cmex10' loaded for size
|
||||
(Font) <5> on input line 8.
|
||||
)
|
||||
\tf@toc=\write4
|
||||
\openout4 = `report.toc'.
|
||||
\openout4 = `Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.toc'.
|
||||
|
||||
[1] [2] (./report.aux)
|
||||
Package logreq Info: Writing requests to 'report.run.xml'.
|
||||
\openout1 = `report.run.xml'.
|
||||
[1]
|
||||
<../poster/Concept.png, id=14, 338.2236pt x 211.992pt>
|
||||
File: ../poster/Concept.png Graphic file (type png)
|
||||
<use ../poster/Concept.png>
|
||||
Package pdftex.def Info: ../poster/Concept.png used on input line 40.
|
||||
(pdftex.def) Requested size: 234.8775pt x 147.21593pt.
|
||||
[2 <../poster/Concept.png>]
|
||||
<../examples/unfiltered_eps_0.2.png, id=22, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/unfiltered_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/unfiltered_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/unfiltered_eps_0.2.png used on input line 66.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/bit_depth_eps_0.2.png, id=23, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/bit_depth_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/bit_depth_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/bit_depth_eps_0.2.png used on input line 67.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/gaussian_blur_eps_0.2.png, id=24, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/gaussian_blur_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/gaussian_blur_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/gaussian_blur_eps_0.2.png used on input line 68.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/gaussian_kuwahara_eps_0.2.png, id=25, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/gaussian_kuwahara_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/gaussian_kuwahara_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/gaussian_kuwahara_eps_0.2.png used on input line 69.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/mean_kuwahara_eps_0.2.png, id=26, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/mean_kuwahara_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/mean_kuwahara_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/mean_kuwahara_eps_0.2.png used on input line 71.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/random_noise_eps_0.2.png, id=27, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/random_noise_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/random_noise_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/random_noise_eps_0.2.png used on input line 72.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/bilateral_filter_eps_0.2.png, id=28, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/bilateral_filter_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/bilateral_filter_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/bilateral_filter_eps_0.2.png used on input line 73.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
<../examples/threshold_eps_0.2.png, id=29, 682.2288pt x 708.9687pt>
|
||||
File: ../examples/threshold_eps_0.2.png Graphic file (type png)
|
||||
<use ../examples/threshold_eps_0.2.png>
|
||||
Package pdftex.def Info: ../examples/threshold_eps_0.2.png used on input line 74.
|
||||
(pdftex.def) Requested size: 58.71938pt x 61.01338pt.
|
||||
[3 <../examples/unfiltered_eps_0.2.png> <../examples/bit_depth_eps_0.2.png> <../examples/gaussian_blur_eps_0.2.png> <../examples/gaussian_kuwahara_eps_0.2.png> <../examples/mean_kuwahara_eps_0.2.png> <../examples/random_noise_eps_0.2.png> <../examples/bilateral_filter_eps_0.2.png> <../examples/threshold_eps_0.2.png>]
|
||||
<../results/MNIST_FGSM_3d_new.png, id=42, 650.43pt x 722.7pt>
|
||||
File: ../results/MNIST_FGSM_3d_new.png Graphic file (type png)
|
||||
<use ../results/MNIST_FGSM_3d_new.png>
|
||||
Package pdftex.def Info: ../results/MNIST_FGSM_3d_new.png used on input line 116.
|
||||
(pdftex.def) Requested size: 155.02pt x 172.23851pt.
|
||||
<../results/CIFAR-10_FGSM_3d.png, id=43, 650.43pt x 722.7pt>
|
||||
File: ../results/CIFAR-10_FGSM_3d.png Graphic file (type png)
|
||||
<use ../results/CIFAR-10_FGSM_3d.png>
|
||||
Package pdftex.def Info: ../results/CIFAR-10_FGSM_3d.png used on input line 117.
|
||||
(pdftex.def) Requested size: 155.02pt x 172.23851pt.
|
||||
[4] [5 <../results/MNIST_FGSM_3d_new.png> <../results/CIFAR-10_FGSM_3d.png>] [6] [7] [8] (./Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.aux)
|
||||
Package logreq Info: Writing requests to 'Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml'.
|
||||
\openout1 = `Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.run.xml'.
|
||||
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
9973 strings out of 476041
|
||||
190508 string characters out of 5793174
|
||||
1852388 words of memory out of 6000000
|
||||
30359 multiletter control sequences out of 15000+600000
|
||||
517188 words of font info for 48 fonts, out of 8000000 for 9000
|
||||
11539 strings out of 476041
|
||||
224526 string characters out of 5793174
|
||||
1861388 words of memory out of 6000000
|
||||
31900 multiletter control sequences out of 15000+600000
|
||||
517964 words of font info for 51 fonts, out of 8000000 for 9000
|
||||
1137 hyphenation exceptions out of 8191
|
||||
63i,6n,68p,679b,1135s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb>
|
||||
Output written on report.pdf (3 pages, 85123 bytes).
|
||||
63i,7n,68p,1221b,1248s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmcsc10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb>
|
||||
Output written on Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.pdf (9 pages, 646007 bytes).
|
||||
PDF statistics:
|
||||
49 PDF objects out of 1000 (max. 8388607)
|
||||
29 compressed objects within 1 object stream
|
||||
132 PDF objects out of 1000 (max. 8388607)
|
||||
68 compressed objects within 1 object stream
|
||||
0 named destinations out of 1000 (max. 500000)
|
||||
1 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
56 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
Binary file not shown.
@ -44,10 +44,10 @@
|
||||
<internal package="biblatex" priority="9" active="0">
|
||||
<generic>latex</generic>
|
||||
<provides type="dynamic">
|
||||
<file>report.bcf</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>report.bbl</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl</file>
|
||||
</requires>
|
||||
<requires type="static">
|
||||
<file>blx-dm.def</file>
|
||||
@ -64,19 +64,19 @@
|
||||
<generic>biber</generic>
|
||||
<cmdline>
|
||||
<binary>biber</binary>
|
||||
<infile>report</infile>
|
||||
<infile>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar</infile>
|
||||
</cmdline>
|
||||
<input>
|
||||
<file>report.bcf</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf</file>
|
||||
</input>
|
||||
<output>
|
||||
<file>report.bbl</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl</file>
|
||||
</output>
|
||||
<provides type="dynamic">
|
||||
<file>report.bbl</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bbl</file>
|
||||
</provides>
|
||||
<requires type="dynamic">
|
||||
<file>report.bcf</file>
|
||||
<file>Report_for_Enhancing_Image_Classifiers_with_Denoising_Filters_Sharpe_Polikar.bcf</file>
|
||||
</requires>
|
||||
<requires type="editable">
|
||||
<file>references.bib</file>
|
Binary file not shown.
@ -0,0 +1,183 @@
|
||||
\documentclass{article}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{float}
|
||||
\usepackage[margin=1in]{geometry}
|
||||
\usepackage[backend=biber]{biblatex}
|
||||
\usepackage{caption}
|
||||
\usepackage{subcaption}
|
||||
|
||||
\addbibresource{references.bib}
|
||||
|
||||
\title{Enhancing Image Classifiers with Denoising Filters}
|
||||
\author{Aidan Sharpe}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{titlepage}
|
||||
\maketitle
|
||||
\end{titlepage}
|
||||
|
||||
\newpage
|
||||
\tableofcontents
|
||||
\pagebreak
|
||||
|
||||
\begin{abstract}
|
||||
With the sudden increase in machine learning applications brought forth in the last eighteen months or so, a new cybersecurity threat has been posed. Not only are traditional cloud-based threats a risk---denial of service attacks for example---AI services are also at risk of being sabotaged by adversarial examples. For this reason, standards have been passed by international governing bodies such as the IEEE to streamline the process of making such services more robust \cite{ieee3129}. To further support increased robustness for online AI services, we propose a pipeline that applies denoising filters to inputs before they reach the model. In doing so, the goal is to remove, or at least reduce the impact of, adversarial attacks. We find that in cases where data is particularly high contrast, some filters can maintain the classifying accuracy of the model at high attack strengths. However, in cases where the data is low contrast, the best filters are only able to keep accuracy slightly better than if the model was simply guessing classes at random.
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction}
|
||||
All neural networks are prone to adversarial attacks \cite{carlini2017evaluating} \cite{szegedy2014intriguing}. When it comes to defending against these attacks, one method is to train using both adversarial (attacked) and clean (not attacked) data. While this method has been shown to somewhat regularize the neural network \cite{goodfellow2015explaining}, the technique fails to generalize to other attacks. A defense technique, from which our approach draws inspiration, involves using a denoising autoencoder to produce only clean data from both adversarial and clean data. This technique shows promise and transferability across a range of attacks.
|
||||
|
||||
Unfortunately, this approach involves training a secondary model to protect the original, which can drastically increase the amount of computing power required for set up. Therefore, in scenarios where reducing computing power is a factor or a simple drop-in defense is required, we propose a pipeline in which commonly available denoising filters are used to pre-process inputs before being fed to the model.
|
||||
|
||||
By implementing this approach, we examined whether preprocessing filters are effective at defending adversarial attacks. To do so, we compared the efficacy of different filters at different filtering strengths. Finally, we plan to investigate the transferability of this approach across models and attacks.
|
||||
|
||||
\section{Approach and Experimental Timeline}
|
||||
We began by establishing a baseline performance with an FGSM attack on a pre-trained MNIST CNN classifier. After verifying that the attack was working, the first filter could be implemented: a Gaussian Kuwahara filter. The Kuwahara filter was initially chosen because it excels at removing noise from smooth areas of an image while also preserving edges. Once this preliminary pipeline was up and running, the code was made more modular with a standard interface to facilitate swapping out models, attacks, and filters.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{../poster/Concept.png}
|
||||
\caption{Simple block diagram of the proposed pipeline}
|
||||
\label{fig:concept-overview}
|
||||
\end{figure}
|
||||
|
||||
With this interface constructed, all alternative filters were tested over a range of attack strengths and with a range of variation on each filter's free parameter. This free parameter is referred to as filtering "strength" for a lack of better terms, although some filters, such as bit-depth reduction, make larger alterations at lower "strength".
|
||||
|
||||
To prevent rerunning the program every time we wanted to change how results were visualized, data for each run was saved in the JSON format specified by the ECMA 404 standard \cite{ecma404}. This allowed for a companion program to read and display results in a number of ways.
|
||||
|
||||
Once we had results for MNIST, we shifted focus to implementing a CIFAR-10 classifier. Originally, we attempted to adapt the LeNet classifier we were already using. This was only able to achieve about 65\% to 70\% accuracy on the validation dataset before plateauing. Therefore, we decided to research what others had found success with. We started to test DLA \cite{yu2019deep}, but after taking too long to train, we pivoted again to VGG16, which we stuck with for testing on filters \cite{simonyan2014very}.
|
||||
|
||||
|
||||
Once we had two working classifiers, LeNet trained on MNIST and VGG16 trained on CIFAR-10, we were able to compare the effectiveness of the filters across models.
|
||||
|
||||
The next logical progression, which will be implemented in the near future, is to implement another attack to evaluate the transferability of our approach across attack methods. This attack is likely to be Carlini and Wagner \cite{carlini2017evaluating}.
|
||||
|
||||
\section{Constraints}
|
||||
In switching from LeNet to deeper networks, two constraints were posed. Firstly, the GPU in the machine used did not support any machine learning hardware acceleration tools like CUDA or ROCm. Being forced to do everything on the CPU imposed a limit on how much training and testing could be done within a reasonable amount of time. Limited computing resources also guided our decision to pick CIFAR-10 over a higher-resolution dataset like ImageNet.
|
||||
|
||||
The other constraint was posed by the version management system used. While Git itself does not really have a limit, the current server-side setup requires that files be under about 100 MB each. Since we wanted to store the trained models alongside the other files in the repository, this limited the number of parameters our models had. While the largest model used in testing was 62MiB, the limit significantly narrowed the list of possible choices.
|
||||
|
||||
\section{Alternative Filters}
|
||||
Seven image processing filters were selected, and their performances were compared over a range of attack strengths, while parametrically varying each filter's free parameter. In this way, the optimal parameters for each filter could be found, and their effectiveness against adversarial examples could be examined. An overview of how each filter operates on a randomly selected MNIST example attacked with FGSM with $\epsilon=0.2$ is seen in figure \ref{fig:alternative_filters}.
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.125\textwidth]{../examples/unfiltered_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/bit_depth_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/gaussian_blur_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/gaussian_kuwahara_eps_0.2.png}
|
||||
|
||||
\includegraphics[width=0.125\textwidth]{../examples/mean_kuwahara_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/random_noise_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/bilateral_filter_eps_0.2.png}
|
||||
\includegraphics[width=0.125\textwidth]{../examples/threshold_eps_0.2.png}
|
||||
\caption{The seven selected filters operating on a randomly selected sample from MNIST attacked with FGSM with $\epsilon=0.2$}
|
||||
\label{fig:alternative_filters}
|
||||
\end{figure}
|
||||
|
||||
The first set of filters examined were the Kuwahara filters, both Gaussian and Mean variants. They operate based on the variance of four overlapping regions in a kernel. These filters were selected due to their ability to preserve edges and blur smooth areas: a desirable property for removing noise. The Kuwahara filter is typically used to implement an oil painting effect in some software packages, but was originally used to make interpreting medical imaging easier \cite{kuwahara1976processing}. The free parameter for both Kuwahara filters is the radius of the kernel, and its relation to filter strength is given by:
|
||||
\begin{equation}
|
||||
r = 2s + 1
|
||||
\label{eqn:rad_odd_strength}
|
||||
\end{equation}
|
||||
where $r$ is the kernel radius, and $s$ is the filter strength.
|
||||
|
||||
The Gaussian blur was implemented next, as it is a simple and very common filter. It acts as a lowpass filter, blurring both smooth areas and edges. Similar to the Kuwahara filters, the free parameter of the Gaussian blur is radius, and it has the same relationship to strength given by equation \ref{eqn:rad_odd_strength}.
|
||||
|
||||
The bilateral filter was selected because, like the Kuwahara filter, it reduces noise but preserves edges. The resulting images are very different, however. While the Kuwahara filter produces more "blotchy-looking" images, the bilateral filter produces smooth images. The bilateral filter instead uses kernel diameter as a free parameter, and the implementation used requires this parameter be an odd number. Hence, the diameter is calculated with the relationship:
|
||||
\begin{equation}
|
||||
d = 2s + 1
|
||||
\end{equation}
|
||||
where $d$ is the kernel diameter, and $s$ is the filtering strength.
|
||||
|
||||
As a control of sorts, to see if the filters were acting as defense or simply perturbing the attacked images away from the area of adversarial behavior, a noise "filter" was implemented. The noise added was specifically Gaussian noise with a mean $\mu=0$ and a standard deviation $\sigma=180$. The free parameter selected was the intensity of the noise, meaning with a higher strength, the signal to noise ratio (SNR) would degrade. The relationship between strength and intensity was
|
||||
\begin{equation}
|
||||
I = I_0 (2s + 1)
|
||||
\end{equation}
|
||||
where $I$ is intensity, $s$ is strength, and $I_0$ is the initial intensity. For our tests, we used $I_0 = 5\times10^{-4}$.
|
||||
|
||||
While not typically used as a filter, a bit-depth reduction was chosen because it quantizes the image. In doing so, small perturbations should have no change in most of the image, except for where the value was already close to the threshold. Overall, a bit-depth reduction should be solid against low-amplitude attacks. The free parameter of this operation is the number of bits. In relationship to strength,
|
||||
\begin{equation}
|
||||
b = 2^s
|
||||
\end{equation}
|
||||
where $b$ is the number of bits. The bit-depth reduction is one such case where increasing strength is produces counter-intuitive effects.
|
||||
|
||||
The final filter tested was a simple threshold. For each channel, the value would set to the maximum value when above the threshold and to the minimum value when below the threshold. For a floating-point greyscale image, the maximum value is one and the minimum value is zero. The threshold filter is another such filter where mapping the free parameter to strength seems odd. The free parameter is the threshold, which is given by
|
||||
\begin{equation}
|
||||
T = {2s + 1 \over 10}
|
||||
\end{equation}
|
||||
where $T$ is the threshold. Perhaps this definition could be better as it restricts strength to be values in the range $[-0.5,4.5]$. Regardless, this is the definition used in testing to get an even spread of thresholds between zero and one.
|
||||
|
||||
\section{Results and Evaluation}
|
||||
With the two free parameters, filter strength and attack strength, the accuracy of each filter can be thought of as a point in 3D space. For each filter strength and attack strength, the highest accuracy filter was chosen to represent that point. For our purposes, the accuracy was defined as the ratio of correct predictions to total predictions. The best filters and their accuracies for each attack strength and filter strength for MNIST and CIFAR-10 are seen in figure \ref{fig:filter_performances}.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.33\textwidth]{../results/MNIST_FGSM_3d_new.png}
|
||||
\includegraphics[width=0.33\textwidth]{../results/CIFAR-10_FGSM_3d.png}
|
||||
\caption{The highest rank filter and its accuracy for each attack strength and filter strength}
|
||||
\label{fig:filter_performances}
|
||||
\end{figure}
|
||||
|
||||
To determine how well a filter is performing, two measures of effectiveness are defined. An \emph{ideally effective} filter will produce the same classifier accuracy for both clean and attacked images. While a lofty goal for sure, this is the ideal case.
|
||||
|
||||
The second measure of effectiveness we defined is a \emph{minimally effective} filter. To be minimally effective, the accuracy of the classifier must only be higher than if it were randomly guessing the class. For example, for a balanced dataset with ten classes, the expected accuracy for randomly guessing is 10\%. If the accuracy is consistently above this threshold for both clean and attacked inputs, then the filter may be deemed minimally effective.
|
||||
|
||||
This definition was chosen, because if a classifier is performing better than randomly guessing, then it may be boosted to increase accuracy \cite{schapire1989strength}.
|
||||
|
||||
\section{Conclusions}
|
||||
As seen in figure \ref{fig:filter_performances}, the threshold filter operates as a nearly ideal filter for MNIST even at the highest attack strengths tested. Additionally for the MNIST case, the Gaussian Kuwahara filter prevails at high filter strength and high attack strength.
|
||||
|
||||
For CIFAR-10, however, the results are not nearly as promising. While for every attack strength tested there was a filter at some strength that kept the classifier above the random guessing threshold, there were no filters that came even close to the ideal case.
|
||||
|
||||
We hypothesize that, at least for low-resolution datasets, having low contrast images makes defending attacks more difficult. Taking a look at what the threshold filter does to an attacked image in figure \ref{fig:alternative_filters}, it becomes apparent why it works so well for MNIST. Essentially, when attacked, the SNR is still quite low.
|
||||
|
||||
In the case of CIFAR-10, discerning the clean images can be difficult for a human observer at times. Therefore, it is understandable why FGSM impacted CIFAR-10 much more than MNIST. To better understand how filters apply to color photos in general, testing with the ImageNet database is a logical next step.
|
||||
|
||||
\section{Ethical Considerations}
|
||||
\subsection{Heath and Safety Considerations}
|
||||
When it comes to image classifier services, many tools will not have any direct impact on the health and safety of others. In some cases, however, if the classifier is being used to operate machinery, such as in self-driving vehicles, having a robust pipeline is important to keeping people out of harm's way. Additionally, for services such as plant classifiers, if a poisonous plant is identified as safe to eat, people may fall ill or perish.
|
||||
|
||||
Therefore, as such machine learning services become more popular, being robust to adversarial attacks is of the utmost importance to human health. For this reason, unless further research shows that filtering is an effective defense for higher resolution color images, we cannot recommend that filters be used as an adversarial defense in any service that may involve machinery, food, or any other potentially hazardous element.
|
||||
|
||||
We initially chose the filtering approach because it is potentially faster than a denoising autoencoder. This way, if our approach is found to be effective against adversarial attacks, we can increase the safety of equipment operators in time-sensitive operations.
|
||||
|
||||
\subsection{Social and Cultural Considerations}
|
||||
Be it source code, experimental procedures, raw results, or otherwise, having closed-source anything in an academic project should raise a red flag. To ensure equal access and full transparency with the readers and those wishing to reproduce the results found in this paper, all code, results, document files, and their editing histories are free and open source (FOSS) under the MIT license. All software packages and external libraries used were also ensured to be FOSS before use.
|
||||
|
||||
\subsection{Environmental Considerations}
|
||||
One possible source for environmental impact, when it comes to adversarial defenses, is reducing energy consumption. Outside of academia, the most likely victim for an adversarial attack is AI web services hosted in data centers. These data centers are always online, so by reducing the energy use, the amount of fossil fuels consumed to power the data center can be reduced. For services dealing with only high-contrast, greyscale datasets, we recommend looking into a filter defense to avoid wasting energy training a denoising autoencoder.
|
||||
|
||||
While admittedly, slightly reducing energy consumption will not make the difference in the long run, doing anything to reduce power consumption helps.
|
||||
|
||||
\subsection{Economic and Financial Considerations}
|
||||
As noted several times previously, online services have new cybersecurity risks when it comes to machine learning. Dealing with adversarial examples may result in financial damages whether in the form of lawsuits or lost sales due to sabotage.
|
||||
|
||||
One benefit of filtering over a denoising autoencoder is a deterministic output. Since filters behave like any other algorithmic method, the output of any input is easily determined. This way, auxiliary algorithms such as checksums or cryptographic signing can be used to verify inputs to the model. The determinism of filtering opens the door to enhanced cybersecurity integrations.
|
||||
|
||||
Unfortunately, this determinism may also put the service at risk from reverse engineered attacks, since it is much easier to reverse engineer an algorithm than an autoencoder's parameters. Still, the potential cybersecurity advantages that come with an algorithmic approach drove much of the curiosity behind this project.
|
||||
|
||||
|
||||
\subsection{Generative AI Disclaimer}
|
||||
All code, results data, writing, figures, equations, typos, and errors, unless a source is cited, are the words and work of the authors listed on the title page. ChatGPT 3.5 was used to assist with the wording of the title of this paper, but no other generative AI was used in this project.
|
||||
|
||||
\section{Key Takeaways}
|
||||
This project started with very little knowledge about machine learning, let alone adversarial machine learning. We had some prior experience working with image processing and filtering in Python, which partly inspired our approach. For the most part, however, all knowledge presented at the end of the semester was learned throughout the semester. Everything from builing custom models to implementing, training, and validating machine learning models, to learning how to attack a model, to even learning how to use Matplotlib's 3D functionionality.
|
||||
|
||||
The primary source of information was library documentation, after that, it was teammates with prior experience in adversarial machine learning. Other questions not answerable by those sources were answered by reading prior papers published on filters and adversarial machine learning.
|
||||
|
||||
\section{Future Work}
|
||||
While significant progress was made in developing the proposed pipeline, we did not meet all of our requirements, and therefore are not yet in a position to publish this work. To meet these requirements, we must still test at least one more attack, likely Carlini and Wagner \cite{carlini2017evaluating}.
|
||||
|
||||
Additionally, we find it important to standardize the strength parameter with a more robust, likely SNR-based definition. In doing so, calling the parameter "strength" would make more intuitive sense, and it would provide a fairer comparison of the filters.
|
||||
|
||||
Third, we would like to test the hypothesis that filtering is more energy efficient than a denoising autoencoder. If it is more energy efficient, then the proposed pipeline may be appealing to data centers whose primary cost-cutting measure is to reduce power consumption.
|
||||
|
||||
Finally, we plan to implement a few more alternative filters. Some of which will be quite easy to implement (simply a call to a library function), while others will require a custom implementation.
|
||||
|
||||
\section{Acknowledgements}
|
||||
In any academic effort, we stand on the shoulders of giants. This project is no different and would not have been possible without help of several key resources. Special thanks to the PyTorch examples team for providing the baseline implementation of the LeNet classifier used on MNIST and the implementation of the FGSM attack with varying strengths. This project also heavily used the NumPy, Matplotlib, PyTorch libraries. Filters not implemented by the authors used the cv2 distribution of OpenCV for Python, and the Kuwahara filters were implemented using the pykuwahara library. Additionally, we would not have found VGG16 or DLA without the help from kuangliu on GitHub, who supplied the source code and performances of a set of models on CIFAR-10. To fix the rendering of Matplotlib's 3D bar chart, code from codeMonkey, marisano, and CYang on Stack Overflow was used. Finally, we would like to thank Dr. Robi Polikar and Chaz Allegra for their mentorship and unending support throughout the course of this project. Without their help and dedication, we would not have made nearly as much progress this semester.
|
||||
|
||||
\pagebreak
|
||||
\printbibliography
|
||||
\end{document}
|
@ -0,0 +1,15 @@
|
||||
\contentsline {section}{\numberline {1}Introduction}{2}{}%
|
||||
\contentsline {section}{\numberline {2}Approach and Experimental Timeline}{2}{}%
|
||||
\contentsline {section}{\numberline {3}Constraints}{3}{}%
|
||||
\contentsline {section}{\numberline {4}Alternative Filters}{3}{}%
|
||||
\contentsline {section}{\numberline {5}Results and Evaluation}{4}{}%
|
||||
\contentsline {section}{\numberline {6}Conclusions}{5}{}%
|
||||
\contentsline {section}{\numberline {7}Ethical Considerations}{5}{}%
|
||||
\contentsline {subsection}{\numberline {7.1}Heath and Safety Considerations}{5}{}%
|
||||
\contentsline {subsection}{\numberline {7.2}Social and Cultural Considerations}{6}{}%
|
||||
\contentsline {subsection}{\numberline {7.3}Environmental Considerations}{6}{}%
|
||||
\contentsline {subsection}{\numberline {7.4}Economic and Financial Considerations}{6}{}%
|
||||
\contentsline {subsection}{\numberline {7.5}Generative AI Disclaimer}{6}{}%
|
||||
\contentsline {section}{\numberline {8}Key Takeaways}{6}{}%
|
||||
\contentsline {section}{\numberline {9}Future Work}{7}{}%
|
||||
\contentsline {section}{\numberline {10}Acknowledgements}{7}{}%
|
@ -75,3 +75,12 @@
|
||||
keywords={Polynomials;Boosting;Laboratories;Computer science;Upper bound;Boolean functions;Filtering},
|
||||
doi={10.1109/SFCS.1989.63451}
|
||||
}
|
||||
|
||||
@article{kuwahara1976processing,
|
||||
title={Processing of RI-angiocardiographic images},
|
||||
author={Kuwahara, Michiyoshi and Hachimura, Kozaburo and Eiho, Shigeru and Kinoshita, Masato},
|
||||
journal={Digital processing of biomedical images},
|
||||
pages={187--202},
|
||||
year={1976},
|
||||
publisher={Springer}
|
||||
}
|
||||
|
@ -1,11 +0,0 @@
|
||||
\relax
|
||||
\abx@aux@refcontext{nty/global//global/global}
|
||||
\abx@aux@cite{0}{carlini2017evaluating}
|
||||
\abx@aux@segm{0}{0}{carlini2017evaluating}
|
||||
\abx@aux@cite{0}{szegedy2014intriguing}
|
||||
\abx@aux@segm{0}{0}{szegedy2014intriguing}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{}\protected@file@percent }
|
||||
\abx@aux@read@bbl@mdfivesum{5AF852CF1739D5FEE51B58AF196D487D}
|
||||
\abx@aux@defaultrefcontext{0}{carlini2017evaluating}{nty/global//global/global}
|
||||
\abx@aux@defaultrefcontext{0}{szegedy2014intriguing}{nty/global//global/global}
|
||||
\gdef \@abspage@last{3}
|
@ -1,108 +0,0 @@
|
||||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.2 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated by
|
||||
% biber as required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
|
||||
\refsection{0}
|
||||
\datalist[entry]{nty/global//global/global}
|
||||
\entry{carlini2017evaluating}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=93330b46aec6ec2750a8adced7fef821}{%
|
||||
family={Carlini},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Nicholas},
|
||||
giveni={N\bibinitperiod}}}%
|
||||
{{hash=45a593fbd4e5b2f4d60199ccfdb4fe59}{%
|
||||
family={Wagner},
|
||||
familyi={W\bibinitperiod},
|
||||
given={David},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{fullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{bibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorbibnamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authornamehash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\strng{authorfullhash}{1841abd848ac2f8ced0f1b456d15ec8c}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CR}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Towards Evaluating the Robustness of Neural Networks}
|
||||
\field{volume}{1608.04644}
|
||||
\field{year}{2017}
|
||||
\endentry
|
||||
\entry{szegedy2014intriguing}{misc}{}
|
||||
\name{author}{7}{}{%
|
||||
{{hash=ed568d9c3bb059e6bf22899fbf170f86}{%
|
||||
family={Szegedy},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christian},
|
||||
giveni={C\bibinitperiod}}}%
|
||||
{{hash=e9fec85bbce1b087a6ebefe26e73f7bf}{%
|
||||
family={Zaremba},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={Wojciech},
|
||||
giveni={W\bibinitperiod}}}%
|
||||
{{hash=8d569d1d5b8b5a7836017a98b430f959}{%
|
||||
family={Sutskever},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Ilya},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=c83b564e32475f10dcc91be7e66d3e81}{%
|
||||
family={Bruna},
|
||||
familyi={B\bibinitperiod},
|
||||
given={Joan},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=8bbc4c5d96f205bada839e74e0202146}{%
|
||||
family={Erhan},
|
||||
familyi={E\bibinitperiod},
|
||||
given={Dumitru},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=5d2585c11210cf1d4512e6e0a03ec315}{%
|
||||
family={Goodfellow},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ian},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
{{hash=a6784304d1cc890b2cb6c6c7f2f3fd76}{%
|
||||
family={Fergus},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Rob},
|
||||
giveni={R\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{fullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\strng{bibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorbibnamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authornamehash}{80f8e6bfc3aff3e75b2807a6f6962740}
|
||||
\strng{authorfullhash}{c8c3e9b8f095d055ce92294b35ff475c}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{eprintclass}{cs.CV}
|
||||
\field{journaltitle}{arXiv}
|
||||
\field{title}{Intriguing properties of neural networks}
|
||||
\field{volume}{1312.6199}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endrefsection
|
||||
\endinput
|
||||
|
@ -1,15 +0,0 @@
|
||||
[0] Config.pm:307> INFO - This is Biber 2.19
|
||||
[0] Config.pm:310> INFO - Logfile is 'report.blg'
|
||||
[77] biber:340> INFO - === Sat May 4, 2024, 22:07:25
|
||||
[91] Biber.pm:419> INFO - Reading 'report.bcf'
|
||||
[155] Biber.pm:979> INFO - Found 2 citekeys in bib section 0
|
||||
[169] Biber.pm:4419> INFO - Processing section 0
|
||||
[184] Biber.pm:4610> INFO - Looking for bibtex file 'references.bib' for section 0
|
||||
[185] bibtex.pm:1713> INFO - LaTeX decoding ...
|
||||
[193] bibtex.pm:1519> INFO - Found BibTeX data source 'references.bib'
|
||||
[248] UCollate.pm:68> INFO - Overriding locale 'en-US' defaults 'normalization = NFD' with 'normalization = prenormalized'
|
||||
[248] UCollate.pm:68> INFO - Overriding locale 'en-US' defaults 'variable = shifted' with 'variable = non-ignorable'
|
||||
[248] Biber.pm:4239> INFO - Sorting list 'nty/global//global/global' of type 'entry' with template 'nty' and locale 'en-US'
|
||||
[248] Biber.pm:4245> INFO - No sort tailoring available for locale 'en-US'
|
||||
[253] bbl.pm:660> INFO - Writing 'report.bbl' with encoding 'UTF-8'
|
||||
[255] bbl.pm:763> INFO - Output to report.bbl
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,29 +0,0 @@
|
||||
\documentclass{article}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{float}
|
||||
\usepackage[margin=1in]{geometry}
|
||||
\usepackage[backend=biber]{biblatex}
|
||||
|
||||
\addbibresource{references.bib}
|
||||
|
||||
\title{Enhancing Image Classifiers with Denoising Filters}
|
||||
\author{Aidan Sharpe}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{titlepage}
|
||||
\maketitle
|
||||
\end{titlepage}
|
||||
|
||||
\newpage
|
||||
\tableofcontents
|
||||
\pagebreak
|
||||
|
||||
\begin{abstract}
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction}
|
||||
All neural networks are prone to adversarial attacks \cite{carlini2017evaluating} \cite{szegedy2014intriguing}.
|
||||
|
||||
\printbibliography
|
||||
\end{document}
|
@ -1 +0,0 @@
|
||||
\contentsline {section}{\numberline {1}Introduction}{2}{}%
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -13,7 +13,7 @@ import torch.nn.functional as F
|
||||
#import dla
|
||||
import vgg
|
||||
|
||||
|
||||
import defense_filters
|
||||
|
||||
EPOCHS = 40
|
||||
|
||||
@ -64,6 +64,11 @@ def train(model, trainloader, device, optimizer, criterion, epoch):
|
||||
# zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = defense_filters.pttensor_to_images(data)
|
||||
for image in images:
|
||||
plt.imshow(image)
|
||||
plt.show()
|
||||
|
||||
# forward + backward + optimize
|
||||
output = model(data)
|
||||
loss = criterion(output, target)
|
||||
|
@ -9,14 +9,18 @@ import torch
|
||||
def pttensor_to_images(data):
|
||||
images = None
|
||||
try:
|
||||
images = data.numpy().transpose(0,2,3,1)
|
||||
#images = data.numpy().transpose(0,2,3,1)
|
||||
images = data.permute(0,2,3,1).numpy()
|
||||
except TypeError:
|
||||
try:
|
||||
images = data.cpu().numpy().transpose(0,2,3,1)
|
||||
images = data.cpu().permute(0,2,3,1).numpy()
|
||||
#images = data.cpu().numpy().transpose(0,2,3,1)
|
||||
except RuntimeError:
|
||||
images = data.cpu().detach().numpy().transpose(0,2,3,1)
|
||||
images = data.cpu().detach().permute(0,2,3,1).numpy()
|
||||
#images = data.cpu().detach().numpy().transpose(0,2,3,1)
|
||||
except RuntimeError:
|
||||
images = data.detach().numpy().transpose(0,2,3,1)
|
||||
images = data.detach().permute(0,2,3,1).numpy()
|
||||
#images = data.detach().numpy().transpose(0,2,3,1)
|
||||
|
||||
return images
|
||||
|
||||
@ -29,7 +33,7 @@ def gaussian_kuwahara(data, dimensions, radius=5):
|
||||
filtered_images[i] = kuwahara(images[i], method='gaussian', radius=radius, image_2d=images[i])
|
||||
if i == 0 and radius == 5:
|
||||
plt.title("Gaussian Kuwahara", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
@ -44,7 +48,7 @@ def mean_kuwahara(data, dimensions, radius=5):
|
||||
filtered_images[i] = kuwahara(images[i], method='mean', radius=radius, image_2d=images[i])
|
||||
if i == 0 and radius == 5:
|
||||
plt.title("Mean Kuwahara", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
@ -63,7 +67,7 @@ def random_noise(data, dimensions, intensity=0.001):
|
||||
filtered_images[i] = cv2.addWeighted(images[i], 1.0, noise, intensity, 0.0).reshape(filtered_images[i].shape)
|
||||
if i == 0 and intensity == 0.0015:
|
||||
plt.title("Random Noise", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
|
||||
@ -79,10 +83,10 @@ def gaussian_blur(data, dimensions, ksize=(5,5)):
|
||||
filtered_images[i] = cv2.GaussianBlur(images[i], ksize=ksize, sigmaX=0).reshape(filtered_images[i].shape)
|
||||
if i == 0 and ksize[0] == 5:
|
||||
plt.title("Unfiltered", fontsize=40)
|
||||
plt.imshow(images[i], cmap='gray')
|
||||
plt.imshow(images[i])
|
||||
plt.show()
|
||||
plt.title("Gaussian Blur", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
@ -97,7 +101,7 @@ def bilateral_filter(data, dimensions, d=5, sigma=50):
|
||||
filtered_images[i] = cv2.bilateralFilter(images[i], d, sigma, sigma).reshape(filtered_images[i].shape)
|
||||
if i == 0 and d == 5:
|
||||
plt.title("Bilateral Filter", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
@ -127,7 +131,7 @@ def threshold_filter(data, dimensions, threshold=0.5):
|
||||
|
||||
if i == 0 and threshold == 0.5:
|
||||
plt.title("Threshold Filter", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
@ -144,7 +148,7 @@ def bit_depth(data, dimensions, bits=16):
|
||||
|
||||
if i == 0 and bits == 4:
|
||||
plt.title("Bit-Depth", fontsize=40)
|
||||
plt.imshow(filtered_images[i], cmap='gray')
|
||||
plt.imshow(filtered_images[i])
|
||||
plt.show()
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
|
1
src/pytorch-cw2
Submodule
1
src/pytorch-cw2
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 44993391ac9444b9941596d7fec6627fe6673910
|
@ -20,40 +20,40 @@ import defense_filters
|
||||
|
||||
|
||||
ATTACK = "FGSM"
|
||||
DATASET = "MNIST"
|
||||
DATASET = "CIFAR-10"
|
||||
|
||||
RES_X = 28
|
||||
RES_Y = 28
|
||||
CHANNELS = 1
|
||||
RES_X = 32
|
||||
RES_Y = 32
|
||||
CHANNELS = 3
|
||||
|
||||
MIN_EPSILON = 0.2
|
||||
MIN_EPSILON = 0.05
|
||||
MAX_EPSILON = 0.3
|
||||
EPSILON_STEP = 0.025
|
||||
|
||||
TESTED_STRENGTH_COUNT = 5
|
||||
epsilons = np.arange(MIN_EPSILON, MAX_EPSILON+EPSILON_STEP, EPSILON_STEP)
|
||||
pretrained_model = "mnist_cnn_unfiltered.pt"
|
||||
pretrained_model = "cifar_vgg.pth"
|
||||
use_cuda=False
|
||||
|
||||
torch.manual_seed(69)
|
||||
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,)),
|
||||
])),
|
||||
batch_size=1, shuffle=False)
|
||||
#test_loader = torch.utils.data.DataLoader(
|
||||
# datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([
|
||||
# transforms.ToTensor(),
|
||||
# transforms.Normalize((0.1307,), (0.3081,)),
|
||||
# ])),
|
||||
# batch_size=1, shuffle=False)
|
||||
|
||||
#transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
||||
#batch_size = 1
|
||||
#testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
||||
#test_loader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=True, num_workers=2)
|
||||
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
||||
batch_size = 1
|
||||
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
||||
test_loader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
|
||||
|
||||
print("CUDA Available: ", torch.cuda.is_available())
|
||||
device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu")
|
||||
|
||||
model = mnist.Net().to(device)
|
||||
model = vgg.VGG("VGG16").to(device)
|
||||
|
||||
model.load_state_dict(torch.load(pretrained_model, map_location=device))
|
||||
|
||||
@ -128,8 +128,15 @@ def test(model, device, test_loader, epsilon, filter):
|
||||
# Restore the data to its original scale
|
||||
data_denorm = denorm(data)
|
||||
|
||||
|
||||
images = defense_filters.pttensor_to_images(data)
|
||||
plt.imshow(images[0])
|
||||
plt.show()
|
||||
|
||||
|
||||
# Apply the FGSM attack
|
||||
perturbed_data = fgsm_attack(data_denorm, epsilon, data_grad)
|
||||
|
||||
|
||||
# Reapply normalization
|
||||
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
|
||||
|
Loading…
Reference in New Issue
Block a user