Results successfully displayed as matplotlib bar3d
This commit is contained in:
1
.~lock.Poster.pptx#
Normal file
1
.~lock.Poster.pptx#
Normal file
@ -0,0 +1 @@
|
||||
,sharpe,dhcp-150-250-208-169,30.04.2024 21:44,file:///home/sharpe/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4;
|
BIN
Concept.png
Normal file
BIN
Concept.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
BIN
Concept.xcf
Normal file
BIN
Concept.xcf
Normal file
Binary file not shown.
BIN
Filter_Analysis/CIFAR-10_FGSM_3d.png
Normal file
BIN
Filter_Analysis/CIFAR-10_FGSM_3d.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 168 KiB |
BIN
Filter_Analysis/MNIST_FGSM_3d.png
Normal file
BIN
Filter_Analysis/MNIST_FGSM_3d.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 164 KiB |
BIN
Filter_Analysis/__pycache__/mplot_3d_helper.cpython-311.pyc
Normal file
BIN
Filter_Analysis/__pycache__/mplot_3d_helper.cpython-311.pyc
Normal file
Binary file not shown.
@ -1,14 +1,14 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
from mplot_3d_helper import *
|
||||
from matplotlib.lines import Line2D
|
||||
import copy
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
is_rank = False
|
||||
is_rank = True
|
||||
has_random_guessing_threshold = False
|
||||
|
||||
data = {}
|
||||
@ -37,7 +37,7 @@ def main():
|
||||
# Make a grid from strengths and epsilons
|
||||
strengths, epsilons = np.meshgrid(strengths,epsilons)
|
||||
|
||||
colors = ('blue', 'orange', 'red', 'purple', 'green', 'yellow', 'brown', 'black')
|
||||
colors = ['blue', 'orange', 'red', 'purple', 'green', 'yellow', 'brown', 'black']
|
||||
|
||||
z = np.zeros_like(strengths)
|
||||
best_performance = np.zeros_like(strengths)
|
||||
@ -50,44 +50,68 @@ def main():
|
||||
z = np.where(performance > z, performance, z)
|
||||
|
||||
z = z.ravel()
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(9,10))
|
||||
for i, filter in enumerate(filters):
|
||||
if i not in best_performance:
|
||||
continue
|
||||
tops = []
|
||||
x = []
|
||||
y = []
|
||||
for j, best in enumerate(best_performance.ravel()):
|
||||
if best == i:
|
||||
x.append(strengths[j])
|
||||
y.append(epsilons[j])
|
||||
tops.append(z[j])
|
||||
x = np.array(x)
|
||||
y = np.array(y)
|
||||
tops = np.array(tops)
|
||||
greyscale = [((height+0.5)/1.5, 0, 0) if height > 0.1 else 'black' for height in tops]
|
||||
if is_rank:
|
||||
ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=colors[i], zsort="average", shade=True, label=filter)
|
||||
else:
|
||||
if i < len(filters)-1:
|
||||
ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=greyscale, zsort="average", shade=True)
|
||||
else:
|
||||
ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=greyscale, zsort="average", shade=True, label=filter)
|
||||
has_random_guessing_threshold = True
|
||||
#for i, filter in enumerate(filters):
|
||||
# if i not in best_performance:
|
||||
# continue
|
||||
# tops = []
|
||||
# x = []
|
||||
# y = []
|
||||
# for j, best in enumerate(best_performance.ravel()):
|
||||
# if best == i:
|
||||
# x.append(strengths[j])
|
||||
# y.append(epsilons[j])
|
||||
# tops.append(z[j])
|
||||
# x = np.array(x)
|
||||
# y = np.array(y)
|
||||
# tops = np.array(tops)
|
||||
# greyscale = [((height+0.5)/1.5, 0, 0) if height > 0.1 else 'black' for height in tops]
|
||||
# if is_rank:
|
||||
# ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=colors[i], zsort="max", shade=True, label=filter)
|
||||
# else:
|
||||
# if i < len(filters)-1:
|
||||
# ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=greyscale, zsort="average", shade=True)
|
||||
# else:
|
||||
# ax.bar3d(x, y, 0, dstrength, depsilon, tops, color=greyscale, zsort="average", shade=True, label=filter)
|
||||
# has_random_guessing_threshold = True
|
||||
|
||||
ax.zaxis.line.set_lw(0.)
|
||||
ax.set_zticks([])
|
||||
ax.view_init(90, 0, 0)
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(9,10))
|
||||
ax.view_init(45, 135, 0)
|
||||
ax.set_proj_type('ortho')
|
||||
|
||||
if is_rank or has_random_guessing_threshold:
|
||||
ax.legend(loc="lower center")
|
||||
plt.title(f"{"Highest Rank Filters" if is_rank else "Filter Performance"} for {dataset}")
|
||||
plt.ylabel(f"{attack} Attack Strength ($\\epsilon$)")
|
||||
plt.xlabel("Filter Strength")
|
||||
plt.clabel(f"{dataset} Classification Accuracy")
|
||||
plt.savefig(f"{dataset}_{attack}_{"highest_rank" if is_rank else "performance_map"}.png")
|
||||
#plt.show()
|
||||
ax_x, ax_y, ax_z = sph_2_cart(*sph_view(ax))
|
||||
camera = np.array((ax_x, ax_y,0))
|
||||
z_order = get_distances(camera, strengths, epsilons, z)
|
||||
|
||||
max_height = max(z_order)
|
||||
best_performance = best_performance.ravel()
|
||||
for i, filter_idx in enumerate(best_performance):
|
||||
filter = list(filters.keys())[filter_idx]
|
||||
top = z[i]
|
||||
x = strengths[i]
|
||||
y = epsilons[i]
|
||||
pl = ax.bar3d(x,y,0,dstrength,depsilon,top, color=colors[filter_idx], zsort="max")
|
||||
pl._sort_zpos = max_height - z_order[i]
|
||||
|
||||
#ax.zaxis.line.set_lw(0.)
|
||||
#ax.set_zticks([])
|
||||
|
||||
#if is_rank or has_random_guessing_threshold:
|
||||
#ax.legend(loc="lower center")
|
||||
#score_type = "Highest Rank Filters" if is_rank else "Filter Performance"
|
||||
custom_lines = []
|
||||
for color in colors:
|
||||
custom_lines.append(Line2D([0], [0], color=color, lw=4))
|
||||
|
||||
filters = [filter.replace('_', ' ').title() for filter in filters]
|
||||
fig.legend(custom_lines, filters, loc="outside lower right")
|
||||
|
||||
plt.title(f"Filter Efficacy for {dataset}", fontsize=40)
|
||||
plt.ylabel(f"{attack} Attack Strength ($\\epsilon$)", fontsize=18)
|
||||
plt.xlabel("Filter Strength", fontsize=18)
|
||||
ax.set_zlabel(f"{dataset} Classification Accuracy", fontsize=18)
|
||||
#score_type = "highest_rank" if is_rank else "performance_map"
|
||||
plt.savefig(f"{dataset}_{attack}_3d.png")
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
25
Filter_Analysis/mplot_3d_helper.py
Normal file
25
Filter_Analysis/mplot_3d_helper.py
Normal file
@ -0,0 +1,25 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def sph_2_cart(r, theta, phi):
|
||||
'''spherical to Cartesian transformation.'''
|
||||
x = r * np.sin(theta) * np.cos(phi)
|
||||
y = r * np.sin(theta) * np.sin(phi)
|
||||
z = r * np.cos(theta)
|
||||
return x, y, z
|
||||
|
||||
def sph_view(ax):
|
||||
'''returns the camera position for 3D axes in spherical coordinates'''
|
||||
r = np.square(np.max([ax.get_xlim(), ax.get_ylim()], 1)).sum()
|
||||
theta, phi = np.radians((90-ax.elev, ax.azim))
|
||||
return r, theta, phi
|
||||
#
|
||||
# end of apodemus's code
|
||||
|
||||
def get_distances(view, xpos, ypos, dz):
|
||||
distances = []
|
||||
a = np.array((xpos, ypos, dz))
|
||||
for i in range(len(xpos)):
|
||||
distance = (a[0, i] - view[0])**2 + (a[1, i] - view[1])**2 + (a[2, i] - view[2])**2
|
||||
distances.append(np.sqrt(distance))
|
||||
return distances
|
@ -1,26 +1,27 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import copy
|
||||
|
||||
def reformat_data():
|
||||
results = {}
|
||||
with open("results/mnist_fgsm.json", "r") as infile:
|
||||
results = json.load(infile)
|
||||
|
||||
reformatted_results = {}
|
||||
#reformatted_results = {}
|
||||
|
||||
reformatted_results["dataset"] = "MNIST"
|
||||
reformatted_results["attack"] = "FGSM"
|
||||
#reformatted_results["dataset"] = "MNIST"
|
||||
#reformatted_results["attack"] = "FGSM"
|
||||
|
||||
MAX_EPSILON = 0.3
|
||||
EPSILON_STEP = 0.025
|
||||
epsilons = np.arange(0.0, MAX_EPSILON+EPSILON_STEP, EPSILON_STEP)
|
||||
#MAX_EPSILON = 0.3
|
||||
#EPSILON_STEP = 0.025
|
||||
#epsilons = np.arange(0.0, MAX_EPSILON+EPSILON_STEP, EPSILON_STEP)
|
||||
|
||||
reformatted_results["epsilons"] = list(epsilons)
|
||||
#reformatted_results["epsilons"] = list(epsilons)
|
||||
|
||||
reformatted_results["filters"] = {}
|
||||
reformatted_results = copy.deepcopy(results)
|
||||
filters = list(results.keys())[1:]
|
||||
for filter in filters:
|
||||
reformatted_results["filters"][filter] = results[filter]
|
||||
for i, epsilon in enumerate(results["epsilons"]):
|
||||
reformatted_results["filters"]["bit_depth"][i] = results["filters"]["bit_depth"][i][::-1]
|
||||
|
||||
reformatted_results_json = json.dumps(reformatted_results, indent=4)
|
||||
with open("results/mnist_fgsm_reformatted.json", "w") as outfile:
|
||||
|
672
Filter_Analysis/results/mnist_fgsm_reformatted.json
Normal file
672
Filter_Analysis/results/mnist_fgsm_reformatted.json
Normal file
@ -0,0 +1,672 @@
|
||||
{
|
||||
"dataset": "MNIST",
|
||||
"attack": "FGSM",
|
||||
"epsilons": [
|
||||
0.0,
|
||||
0.025,
|
||||
0.05,
|
||||
0.07500000000000001,
|
||||
0.1,
|
||||
0.125,
|
||||
0.15000000000000002,
|
||||
0.17500000000000002,
|
||||
0.2,
|
||||
0.225,
|
||||
0.25,
|
||||
0.275,
|
||||
0.30000000000000004
|
||||
],
|
||||
"filters": {
|
||||
"gaussian_blur": [
|
||||
[
|
||||
0.992,
|
||||
0.9879,
|
||||
0.9682,
|
||||
0.7731,
|
||||
0.525
|
||||
],
|
||||
[
|
||||
0.9796,
|
||||
0.9801,
|
||||
0.9512,
|
||||
0.7381,
|
||||
0.4862
|
||||
],
|
||||
[
|
||||
0.96,
|
||||
0.9674,
|
||||
0.9271,
|
||||
0.6922,
|
||||
0.4446
|
||||
],
|
||||
[
|
||||
0.926,
|
||||
0.946,
|
||||
0.8939,
|
||||
0.6427,
|
||||
0.3989
|
||||
],
|
||||
[
|
||||
0.8753,
|
||||
0.9133,
|
||||
0.8516,
|
||||
0.5881,
|
||||
0.3603
|
||||
],
|
||||
[
|
||||
0.8104,
|
||||
0.869,
|
||||
0.7989,
|
||||
0.5278,
|
||||
0.3263
|
||||
],
|
||||
[
|
||||
0.7229,
|
||||
0.8135,
|
||||
0.7415,
|
||||
0.471,
|
||||
0.2968
|
||||
],
|
||||
[
|
||||
0.6207,
|
||||
0.7456,
|
||||
0.6741,
|
||||
0.4224,
|
||||
0.2683
|
||||
],
|
||||
[
|
||||
0.5008,
|
||||
0.6636,
|
||||
0.5983,
|
||||
0.3755,
|
||||
0.2453
|
||||
],
|
||||
[
|
||||
0.3894,
|
||||
0.5821,
|
||||
0.5243,
|
||||
0.3359,
|
||||
0.2269
|
||||
],
|
||||
[
|
||||
0.2922,
|
||||
0.505,
|
||||
0.4591,
|
||||
0.3034,
|
||||
0.2112
|
||||
],
|
||||
[
|
||||
0.2149,
|
||||
0.429,
|
||||
0.3998,
|
||||
0.2743,
|
||||
0.1983
|
||||
],
|
||||
[
|
||||
0.1599,
|
||||
0.3648,
|
||||
0.3481,
|
||||
0.2493,
|
||||
0.1884
|
||||
]
|
||||
],
|
||||
"gaussian_kuwahara": [
|
||||
[
|
||||
0.9897,
|
||||
0.9766,
|
||||
0.9066,
|
||||
0.7355,
|
||||
0.5131
|
||||
],
|
||||
[
|
||||
0.9808,
|
||||
0.9667,
|
||||
0.8909,
|
||||
0.7035,
|
||||
0.4824
|
||||
],
|
||||
[
|
||||
0.9651,
|
||||
0.9547,
|
||||
0.87,
|
||||
0.6713,
|
||||
0.4538
|
||||
],
|
||||
[
|
||||
0.9412,
|
||||
0.9334,
|
||||
0.8447,
|
||||
0.6354,
|
||||
0.426
|
||||
],
|
||||
[
|
||||
0.9035,
|
||||
0.9107,
|
||||
0.8123,
|
||||
0.597,
|
||||
0.3915
|
||||
],
|
||||
[
|
||||
0.8539,
|
||||
0.8785,
|
||||
0.7751,
|
||||
0.5616,
|
||||
0.362
|
||||
],
|
||||
[
|
||||
0.7925,
|
||||
0.8328,
|
||||
0.7328,
|
||||
0.5236,
|
||||
0.3344
|
||||
],
|
||||
[
|
||||
0.7078,
|
||||
0.7808,
|
||||
0.6816,
|
||||
0.4868,
|
||||
0.309
|
||||
],
|
||||
[
|
||||
0.6125,
|
||||
0.7179,
|
||||
0.6301,
|
||||
0.4513,
|
||||
0.2865
|
||||
],
|
||||
[
|
||||
0.4979,
|
||||
0.646,
|
||||
0.5773,
|
||||
0.4242,
|
||||
0.2702
|
||||
],
|
||||
[
|
||||
0.3927,
|
||||
0.564,
|
||||
0.5197,
|
||||
0.3859,
|
||||
0.2493
|
||||
],
|
||||
[
|
||||
0.3023,
|
||||
0.4761,
|
||||
0.4594,
|
||||
0.3494,
|
||||
0.2354
|
||||
],
|
||||
[
|
||||
0.2289,
|
||||
0.3839,
|
||||
0.3981,
|
||||
0.3182,
|
||||
0.2232
|
||||
]
|
||||
],
|
||||
"mean_kuwahara": [
|
||||
[
|
||||
0.988,
|
||||
0.7536,
|
||||
0.3667,
|
||||
0.1763,
|
||||
0.1339
|
||||
],
|
||||
[
|
||||
0.9795,
|
||||
0.7359,
|
||||
0.3496,
|
||||
0.171,
|
||||
0.1318
|
||||
],
|
||||
[
|
||||
0.965,
|
||||
0.7129,
|
||||
0.3295,
|
||||
0.1637,
|
||||
0.1286
|
||||
],
|
||||
[
|
||||
0.946,
|
||||
0.6871,
|
||||
0.3119,
|
||||
0.1578,
|
||||
0.1244
|
||||
],
|
||||
[
|
||||
0.916,
|
||||
0.6617,
|
||||
0.2841,
|
||||
0.1497,
|
||||
0.1228
|
||||
],
|
||||
[
|
||||
0.8746,
|
||||
0.6317,
|
||||
0.2587,
|
||||
0.1422,
|
||||
0.1211
|
||||
],
|
||||
[
|
||||
0.8235,
|
||||
0.6019,
|
||||
0.2395,
|
||||
0.136,
|
||||
0.1193
|
||||
],
|
||||
[
|
||||
0.7499,
|
||||
0.5699,
|
||||
0.2253,
|
||||
0.134,
|
||||
0.1164
|
||||
],
|
||||
[
|
||||
0.665,
|
||||
0.542,
|
||||
0.2168,
|
||||
0.1335,
|
||||
0.1138
|
||||
],
|
||||
[
|
||||
0.5642,
|
||||
0.5087,
|
||||
0.2064,
|
||||
0.1328,
|
||||
0.1129
|
||||
],
|
||||
[
|
||||
0.4739,
|
||||
0.4773,
|
||||
0.1993,
|
||||
0.1306,
|
||||
0.1145
|
||||
],
|
||||
[
|
||||
0.3638,
|
||||
0.437,
|
||||
0.1921,
|
||||
0.1309,
|
||||
0.1159
|
||||
],
|
||||
[
|
||||
0.2659,
|
||||
0.3912,
|
||||
0.1854,
|
||||
0.1307,
|
||||
0.1166
|
||||
]
|
||||
],
|
||||
"random_noise": [
|
||||
[
|
||||
0.9913,
|
||||
0.9899,
|
||||
0.9872,
|
||||
0.9719,
|
||||
0.9226
|
||||
],
|
||||
[
|
||||
0.9793,
|
||||
0.9782,
|
||||
0.9711,
|
||||
0.9453,
|
||||
0.8802
|
||||
],
|
||||
[
|
||||
0.9603,
|
||||
0.9568,
|
||||
0.9436,
|
||||
0.9049,
|
||||
0.8184
|
||||
],
|
||||
[
|
||||
0.9253,
|
||||
0.9183,
|
||||
0.895,
|
||||
0.8392,
|
||||
0.7432
|
||||
],
|
||||
[
|
||||
0.8743,
|
||||
0.8653,
|
||||
0.8309,
|
||||
0.7656,
|
||||
0.6606
|
||||
],
|
||||
[
|
||||
0.809,
|
||||
0.7948,
|
||||
0.7486,
|
||||
0.6709,
|
||||
0.5588
|
||||
],
|
||||
[
|
||||
0.721,
|
||||
0.6999,
|
||||
0.6485,
|
||||
0.5625,
|
||||
0.4577
|
||||
],
|
||||
[
|
||||
0.6157,
|
||||
0.5881,
|
||||
0.5377,
|
||||
0.4548,
|
||||
0.3647
|
||||
],
|
||||
[
|
||||
0.5005,
|
||||
0.4802,
|
||||
0.4267,
|
||||
0.3571,
|
||||
0.2885
|
||||
],
|
||||
[
|
||||
0.385,
|
||||
0.3668,
|
||||
0.3295,
|
||||
0.2696,
|
||||
0.2223
|
||||
],
|
||||
[
|
||||
0.2918,
|
||||
0.2758,
|
||||
0.244,
|
||||
0.2039,
|
||||
0.1724
|
||||
],
|
||||
[
|
||||
0.215,
|
||||
0.2016,
|
||||
0.1832,
|
||||
0.1555,
|
||||
0.1326
|
||||
],
|
||||
[
|
||||
0.1591,
|
||||
0.154,
|
||||
0.1371,
|
||||
0.1163,
|
||||
0.1021
|
||||
]
|
||||
],
|
||||
"bilateral_filter": [
|
||||
[
|
||||
0.9887,
|
||||
0.9887,
|
||||
0.9391,
|
||||
0.5584,
|
||||
0.2568
|
||||
],
|
||||
[
|
||||
0.9809,
|
||||
0.9809,
|
||||
0.9184,
|
||||
0.5198,
|
||||
0.241
|
||||
],
|
||||
[
|
||||
0.9695,
|
||||
0.9695,
|
||||
0.8902,
|
||||
0.4831,
|
||||
0.2245
|
||||
],
|
||||
[
|
||||
0.9482,
|
||||
0.9482,
|
||||
0.8533,
|
||||
0.4436,
|
||||
0.2079
|
||||
],
|
||||
[
|
||||
0.9142,
|
||||
0.9142,
|
||||
0.8133,
|
||||
0.4019,
|
||||
0.1915
|
||||
],
|
||||
[
|
||||
0.8714,
|
||||
0.8714,
|
||||
0.7656,
|
||||
0.3641,
|
||||
0.1792
|
||||
],
|
||||
[
|
||||
0.8169,
|
||||
0.8169,
|
||||
0.7098,
|
||||
0.3299,
|
||||
0.1681
|
||||
],
|
||||
[
|
||||
0.7477,
|
||||
0.7477,
|
||||
0.641,
|
||||
0.2978,
|
||||
0.161
|
||||
],
|
||||
[
|
||||
0.6619,
|
||||
0.6619,
|
||||
0.5683,
|
||||
0.2723,
|
||||
0.1563
|
||||
],
|
||||
[
|
||||
0.5767,
|
||||
0.5767,
|
||||
0.5003,
|
||||
0.2476,
|
||||
0.1517
|
||||
],
|
||||
[
|
||||
0.4922,
|
||||
0.4922,
|
||||
0.4381,
|
||||
0.2288,
|
||||
0.1484
|
||||
],
|
||||
[
|
||||
0.4133,
|
||||
0.4133,
|
||||
0.3836,
|
||||
0.2126,
|
||||
0.146
|
||||
],
|
||||
[
|
||||
0.3468,
|
||||
0.3468,
|
||||
0.3364,
|
||||
0.1999,
|
||||
0.1444
|
||||
]
|
||||
],
|
||||
"bit_depth": [
|
||||
[
|
||||
0.992,
|
||||
0.992,
|
||||
0.9916,
|
||||
0.9913,
|
||||
0.9894
|
||||
],
|
||||
[
|
||||
0.9796,
|
||||
0.9796,
|
||||
0.9807,
|
||||
0.9823,
|
||||
0.9862
|
||||
],
|
||||
[
|
||||
0.96,
|
||||
0.9604,
|
||||
0.965,
|
||||
0.9781,
|
||||
0.9808
|
||||
],
|
||||
[
|
||||
0.926,
|
||||
0.926,
|
||||
0.9219,
|
||||
0.9228,
|
||||
0.9744
|
||||
],
|
||||
[
|
||||
0.8753,
|
||||
0.8751,
|
||||
0.8747,
|
||||
0.8818,
|
||||
0.9424
|
||||
],
|
||||
[
|
||||
0.8104,
|
||||
0.8094,
|
||||
0.821,
|
||||
0.8621,
|
||||
0.9307
|
||||
],
|
||||
[
|
||||
0.7229,
|
||||
0.7235,
|
||||
0.7427,
|
||||
0.8408,
|
||||
0.9157
|
||||
],
|
||||
[
|
||||
0.6207,
|
||||
0.6229,
|
||||
0.6554,
|
||||
0.7794,
|
||||
0.8972
|
||||
],
|
||||
[
|
||||
0.5008,
|
||||
0.5046,
|
||||
0.559,
|
||||
0.7496,
|
||||
0.8799
|
||||
],
|
||||
[
|
||||
0.3894,
|
||||
0.3914,
|
||||
0.4547,
|
||||
0.5289,
|
||||
0.8581
|
||||
],
|
||||
[
|
||||
0.2922,
|
||||
0.2927,
|
||||
0.3113,
|
||||
0.4301,
|
||||
0.7603
|
||||
],
|
||||
[
|
||||
0.2149,
|
||||
0.2168,
|
||||
0.2414,
|
||||
0.3992,
|
||||
0.7227
|
||||
],
|
||||
[
|
||||
0.1599,
|
||||
0.161,
|
||||
0.1874,
|
||||
0.2091,
|
||||
0.2624
|
||||
]
|
||||
],
|
||||
"threshold_filter": [
|
||||
[
|
||||
0.982,
|
||||
0.9817,
|
||||
0.9799,
|
||||
0.9713,
|
||||
0.9502
|
||||
],
|
||||
[
|
||||
0.978,
|
||||
0.9755,
|
||||
0.9751,
|
||||
0.9655,
|
||||
0.9334
|
||||
],
|
||||
[
|
||||
0.9728,
|
||||
0.9713,
|
||||
0.9696,
|
||||
0.9578,
|
||||
0.9077
|
||||
],
|
||||
[
|
||||
0.9678,
|
||||
0.9668,
|
||||
0.9645,
|
||||
0.9508,
|
||||
0.1837
|
||||
],
|
||||
[
|
||||
0.9644,
|
||||
0.9604,
|
||||
0.9583,
|
||||
0.9407,
|
||||
0.1818
|
||||
],
|
||||
[
|
||||
0.9586,
|
||||
0.9537,
|
||||
0.9477,
|
||||
0.9238,
|
||||
0.1817
|
||||
],
|
||||
[
|
||||
0.9522,
|
||||
0.9458,
|
||||
0.9343,
|
||||
0.9032,
|
||||
0.1845
|
||||
],
|
||||
[
|
||||
0.9418,
|
||||
0.9387,
|
||||
0.9236,
|
||||
0.8766,
|
||||
0.1849
|
||||
],
|
||||
[
|
||||
0.9331,
|
||||
0.9297,
|
||||
0.9108,
|
||||
0.8358,
|
||||
0.1869
|
||||
],
|
||||
[
|
||||
0.9215,
|
||||
0.9188,
|
||||
0.8927,
|
||||
0.2164,
|
||||
0.1904
|
||||
],
|
||||
[
|
||||
0.9079,
|
||||
0.9053,
|
||||
0.8758,
|
||||
0.223,
|
||||
0.1927
|
||||
],
|
||||
[
|
||||
0.8943,
|
||||
0.8882,
|
||||
0.8508,
|
||||
0.2275,
|
||||
0.1979
|
||||
],
|
||||
[
|
||||
0.8761,
|
||||
0.8687,
|
||||
0.8142,
|
||||
0.2348,
|
||||
0.2025
|
||||
]
|
||||
]
|
||||
}
|
||||
}
|
BIN
Poster.pptx
BIN
Poster.pptx
Binary file not shown.
BIN
TheStrengthOfWeakLearnability.pdf
Normal file
BIN
TheStrengthOfWeakLearnability.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user