Implemented reduced color space (snapped color) filter

This commit is contained in:
Aidan Sharpe 2024-04-05 17:18:25 -04:00
parent 47b14362de
commit afd810a802
4 changed files with 94 additions and 63 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

View File

@ -73,7 +73,8 @@ def test(model, device, test_loader, epsilon):
kuwahara_correct = 0
bilateral_correct = 0
gaussian_blur_correct = 0
noisy_correct = 0
random_noise_correct = 0
attacked_snap_color_correct = 0
adv_examples = []
@ -109,55 +110,66 @@ def test(model, device, test_loader, epsilon):
kuwahara_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="kuwahara")
bilateral_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="bilateral")
gaussian_blur_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="gaussian_blur")
noisy_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="noise")
random_noise_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="noise")
attacked_snap_color_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="snap_color")
# evaluate the model on the attacked and filtered images
output_attacked = model(perturbed_data_normalized)
output_kuwahara = model(kuwahara_data)
output_bilateral = model(bilateral_data)
output_gaussian_blur = model(gaussian_blur_data)
output_noisy = model(noisy_data)
output_random_noise = model(random_noise_data)
output_attacked_snap = model(attacked_snap_color_data)
# Get the predicted class from the model for each case
attacked_pred = output_attacked.max(1, keepdim=True)[1]
kuwahara_pred = output_kuwahara.max(1, keepdim=True)[1]
bilateral_pred = output_bilateral.max(1, keepdim=True)[1]
gaussian_blur_pred = output_gaussian_blur.max(1, keepdim=True)[1]
noisy_pred = output_noisy.max(1, keepdim=True)[1]
random_noise_pred = output_random_noise.max(1, keepdim=True)[1]
attacked_snap_color_pred = output_attacked_snap.max(1, keepdim=True)[1]
# Count up correct classifications for each case
if orig_pred.item() == target.item():
orig_correct += 1
if attacked_pred.item() == target.item():
attacked_correct += 1
if kuwahara_pred.item() == target.item():
kuwahara_correct += 1
if bilateral_pred.item() == target.item():
bilateral_correct += 1
if gaussian_blur_pred.item() == target.item():
gaussian_blur_correct += 1
if noisy_pred.item() == target.item():
noisy_correct += 1
if random_noise_pred.item() == target.item():
random_noise_correct += 1
if attacked_snap_color_pred.item() == target.item():
attacked_snap_color_correct += 1
# Calculate the overall accuracy of each case
orig_acc = orig_correct/float(len(test_loader))
attacked_acc = attacked_correct/float(len(test_loader))
kuwahara_acc = kuwahara_correct/float(len(test_loader))
bilateral_acc = bilateral_correct/float(len(test_loader))
gaussian_blur_acc = gaussian_blur_correct/float(len(test_loader))
noisy_acc = noisy_correct/float(len(test_loader))
random_noise_acc = random_noise_correct/float(len(test_loader))
attacked_snap_color_acc = attacked_snap_color_correct/float(len(test_loader))
print(f"Epsilon: {epsilon}")
print(f"Original Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
print(f"Attacked Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
print(f"Kuwahara Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
print(f"Bilateral Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
print(f"Gaussian Blur Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
print(f"Noisy Accuracy = {noisy_correct} / {len(test_loader)} = {noisy_acc}")
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
print(f"Attacked (No Filter) Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
print(f"Attacked (Kuwahara Filter) Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
print(f"Attacked (Bilateral Filter) Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
print(f"Attacked (Gaussian Blur) Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
print(f"Attacked (Random Noise) Accuracy = {random_noise_correct} / {len(test_loader)} = {random_noise_acc}")
print(f"Attacked (Snapped Color) Accuracy = {attacked_snap_color_correct} / {len(test_loader)} = {attacked_snap_color_acc}")
return attacked_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, noisy_acc
return attacked_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, random_noise_acc, attacked_snap_color_acc
def filtered(data, batch_size=64, filter="kuwahara"):
@ -167,6 +179,7 @@ def filtered(data, batch_size=64, filter="kuwahara"):
images = data.numpy().transpose(0,2,3,1)
except RuntimeError:
images = data.detach().numpy().transpose(0,2,3,1)
# Apply the Kuwahara filter
filtered_images = np.ndarray((batch_size,28,28,1))
@ -197,6 +210,9 @@ def filtered(data, batch_size=64, filter="kuwahara"):
elif filter == "bilateral":
for i in range(batch_size):
filtered_images[i] = cv2.bilateralFilter(images[i], 5, 50, 50).reshape(filtered_images[i].shape)
elif filter == "snap_color":
for i in range(batch_size):
filtered_images[i] = (images[i]*4).astype(int).astype(float) / 4
# Modify the data with the filtered image
filtered_images = filtered_images.transpose(0,3,1,2)
@ -206,21 +222,27 @@ attacked_accuracies = []
kuwahara_accuracies = []
bilateral_accuracies = []
gaussian_blur_accuracies = []
noisy_accuracies = []
random_noise_accuracies = []
attacked_snap_color_accuracies = []
print(f"Model: {pretrained_model}")
for eps in epsilons:
aacc, kacc, bacc, gacc, nacc = test(model, device, test_loader, eps)
aacc, kacc, bacc, gacc, nacc, sacc = test(model, device, test_loader, eps)
attacked_accuracies.append(aacc)
kuwahara_accuracies.append(kacc)
bilateral_accuracies.append(bacc)
gaussian_blur_accuracies.append(gacc)
noisy_accuracies.append(nacc)
random_noise_accuracies.append(nacc)
attacked_snap_color_accuracies.append(sacc)
# Plot the results
plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy")
plt.plot(epsilons, kuwahara_accuracies, label="Kuwahara Accuracy")
plt.plot(epsilons, bilateral_accuracies, label="Bilateral Accuracy")
plt.plot(epsilons, gaussian_blur_accuracies, label="Gaussian Blur Accuracy")
plt.plot(epsilons, random_noise_accuracies, label="Random Noise Accuracy")
plt.plot(epsilons, attacked_snap_color_accuracies, label="Snapped Color Accuracy")
plt.legend()
plt.show()

View File

@ -46,55 +46,64 @@
## Models Defended with Various Filters
### Tabulated Results
| $\epsilon$ | FGSM | Kuwahara | Bilateral | Gaussian Blur | Random Noise |
|------------|--------|----------|-----------|---------------|--------------|
| 0.05 | 0.9600 | 0.8700 | 0.8902 | 0.9271 | 0.9603 |
| 0.10 | 0.8753 | 0.8123 | 0.8133 | 0.8516 | 0.8677 |
| 0.15 | 0.7229 | 0.7328 | 0.7098 | 0.7415 | 0.7153 |
| 0.20 | 0.5008 | 0.6301 | 0.5683 | 0.5983 | 0.4941 |
| 0.25 | 0.2922 | 0.5197 | 0.4381 | 0.4591 | 0.2843 |
| 0.30 | 0.1599 | 0.3981 | 0.3364 | 0.3481 | 0.1584 |
| $\epsilon$ | FGSM | Kuwahara | Bilateral | Gaussian Blur | Random Noise | Snapped Color |
|------------|--------|----------|-----------|---------------|--------------|---------------|
| 0.05 | 0.9600 | 0.8700 | 0.8902 | 0.9271 | 0.9603 | 0.9781 |
| 0.10 | 0.8753 | 0.8123 | 0.8133 | 0.8516 | 0.8677 | 0.8818 |
| 0.15 | 0.7229 | 0.7328 | 0.7098 | 0.7415 | 0.7153 | 0.8408 |
| 0.20 | 0.5008 | 0.6301 | 0.5683 | 0.5983 | 0.4941 | 0.7496 |
| 0.25 | 0.2922 | 0.5197 | 0.4381 | 0.4591 | 0.2843 | 0.4301 |
| 0.30 | 0.1599 | 0.3981 | 0.3364 | 0.3481 | 0.1584 | 0.2091 |
### Plotted Results
![]()
### Raw Program Output
Epsilon: 0.05
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 9600 / 10000 = 0.96
Kuwahara Accuracy = 8700 / 10000 = 0.87
Bilateral Accuracy = 8902 / 10000 = 0.8902
Gaussian Blur Accuracy = 9271 / 10000 = 0.9271
Noisy Accuracy = 9603 / 10000 = 0.9603
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 9600 / 10000 = 0.96
Attacked (Kuwahara Filter) Accuracy = 8700 / 10000 = 0.87
Attacked (Bilateral Filter) Accuracy = 8902 / 10000 = 0.8902
Attacked (Gaussian Blur) Accuracy = 9271 / 10000 = 0.9271
Attacked (Random Noise) Accuracy = 9603 / 10000 = 0.9603
Attacked (Snapped Color) Accuracy = 9781 / 10000 = 0.9781
Epsilon: 0.1
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 8753 / 10000 = 0.8753
Kuwahara Accuracy = 8123 / 10000 = 0.8123
Bilateral Accuracy = 8133 / 10000 = 0.8133
Gaussian Blur Accuracy = 8516 / 10000 = 0.8516
Noisy Accuracy = 8677 / 10000 = 0.8677
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 8753 / 10000 = 0.8753
Attacked (Kuwahara Filter) Accuracy = 8123 / 10000 = 0.8123
Attacked (Bilateral Filter) Accuracy = 8133 / 10000 = 0.8133
Attacked (Gaussian Blur) Accuracy = 8516 / 10000 = 0.8516
Attacked (Random Noise) Accuracy = 8677 / 10000 = 0.8677
Attacked (Snapped Color) Accuracy = 8818 / 10000 = 0.8818
Epsilon: 0.15000000000000002
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 7229 / 10000 = 0.7229
Kuwahara Accuracy = 7328 / 10000 = 0.7328
Bilateral Accuracy = 7098 / 10000 = 0.7098
Gaussian Blur Accuracy = 7415 / 10000 = 0.7415
Noisy Accuracy = 7153 / 10000 = 0.7153
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 7229 / 10000 = 0.7229
Attacked (Kuwahara Filter) Accuracy = 7328 / 10000 = 0.7328
Attacked (Bilateral Filter) Accuracy = 7098 / 10000 = 0.7098
Attacked (Gaussian Blur) Accuracy = 7415 / 10000 = 0.7415
Attacked (Random Noise) Accuracy = 7153 / 10000 = 0.7153
Attacked (Snapped Color) Accuracy = 8408 / 10000 = 0.8408
Epsilon: 0.2
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 5008 / 10000 = 0.5008
Kuwahara Accuracy = 6301 / 10000 = 0.6301
Bilateral Accuracy = 5683 / 10000 = 0.5683
Gaussian Blur Accuracy = 5983 / 10000 = 0.5983
Noisy Accuracy = 4941 / 10000 = 0.4941
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 5008 / 10000 = 0.5008
Attacked (Kuwahara Filter) Accuracy = 6301 / 10000 = 0.6301
Attacked (Bilateral Filter) Accuracy = 5683 / 10000 = 0.5683
Attacked (Gaussian Blur) Accuracy = 5983 / 10000 = 0.5983
Attacked (Random Noise) Accuracy = 4941 / 10000 = 0.4941
Attacked (Snapped Color) Accuracy = 7496 / 10000 = 0.7496
Epsilon: 0.25
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 2922 / 10000 = 0.2922
Kuwahara Accuracy = 5197 / 10000 = 0.5197
Bilateral Accuracy = 4381 / 10000 = 0.4381
Gaussian Blur Accuracy = 4591 / 10000 = 0.4591
Noisy Accuracy = 2843 / 10000 = 0.2843
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 2922 / 10000 = 0.2922
Attacked (Kuwahara Filter) Accuracy = 5197 / 10000 = 0.5197
Attacked (Bilateral Filter) Accuracy = 4381 / 10000 = 0.4381
Attacked (Gaussian Blur) Accuracy = 4591 / 10000 = 0.4591
Attacked (Random Noise) Accuracy = 2843 / 10000 = 0.2843
Attacked (Snapped Color) Accuracy = 4301 / 10000 = 0.4301
Epsilon: 0.3
Original Accuracy = 9920 / 10000 = 0.992
Attacked Accuracy = 1599 / 10000 = 0.1599
Kuwahara Accuracy = 3981 / 10000 = 0.3981
Bilateral Accuracy = 3364 / 10000 = 0.3364
Gaussian Blur Accuracy = 3481 / 10000 = 0.3481
Noisy Accuracy = 1584 / 10000 = 0.1584
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 1599 / 10000 = 0.1599
Attacked (Kuwahara Filter) Accuracy = 3981 / 10000 = 0.3981
Attacked (Bilateral Filter) Accuracy = 3364 / 10000 = 0.3364
Attacked (Gaussian Blur) Accuracy = 3481 / 10000 = 0.3481
Attacked (Random Noise) Accuracy = 1584 / 10000 = 0.1584
Attacked (Snapped Color) Accuracy = 2091 / 10000 = 0.2091