Loop over all filters and serialize results
This commit is contained in:
parent
3c35a2bc02
commit
541a3b0850
BIN
Filter_Analysis/Images/BitDepthReducePerformance.png
Normal file
BIN
Filter_Analysis/Images/BitDepthReducePerformance.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 117 KiB |
Binary file not shown.
367
Filter_Analysis/cifar10.py
Normal file
367
Filter_Analysis/cifar10.py
Normal file
@ -0,0 +1,367 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Training a Classifier
|
||||
=====================
|
||||
|
||||
This is it. You have seen how to define neural networks, compute loss and make
|
||||
updates to the weights of the network.
|
||||
|
||||
Now you might be thinking,
|
||||
|
||||
What about data?
|
||||
----------------
|
||||
|
||||
Generally, when you have to deal with image, text, audio or video data,
|
||||
you can use standard python packages that load data into a numpy array.
|
||||
Then you can convert this array into a ``torch.*Tensor``.
|
||||
|
||||
- For images, packages such as Pillow, OpenCV are useful
|
||||
- For audio, packages such as scipy and librosa
|
||||
- For text, either raw Python or Cython based loading, or NLTK and
|
||||
SpaCy are useful
|
||||
|
||||
Specifically for vision, we have created a package called
|
||||
``torchvision``, that has data loaders for common datasets such as
|
||||
ImageNet, CIFAR10, MNIST, etc. and data transformers for images, viz.,
|
||||
``torchvision.datasets`` and ``torch.utils.data.DataLoader``.
|
||||
|
||||
This provides a huge convenience and avoids writing boilerplate code.
|
||||
|
||||
For this tutorial, we will use the CIFAR10 dataset.
|
||||
It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,
|
||||
‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of
|
||||
size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size.
|
||||
|
||||
.. figure:: /_static/img/cifar10.png
|
||||
:alt: cifar10
|
||||
|
||||
cifar10
|
||||
|
||||
|
||||
Training an image classifier
|
||||
----------------------------
|
||||
|
||||
We will do the following steps in order:
|
||||
|
||||
1. Load and normalize the CIFAR10 training and test datasets using
|
||||
``torchvision``
|
||||
2. Define a Convolutional Neural Network
|
||||
3. Define a loss function
|
||||
4. Train the network on the training data
|
||||
5. Test the network on the test data
|
||||
|
||||
1. Load and normalize CIFAR10
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Using ``torchvision``, it’s extremely easy to load CIFAR10.
|
||||
"""
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
########################################################################
|
||||
# The output of torchvision datasets are PILImage images of range [0, 1].
|
||||
# We transform them to Tensors of normalized range [-1, 1].
|
||||
|
||||
########################################################################
|
||||
# .. note::
|
||||
# If running on Windows and you get a BrokenPipeError, try setting
|
||||
# the num_worker of torch.utils.data.DataLoader() to 0.
|
||||
|
||||
transform = transforms.Compose(
|
||||
[transforms.ToTensor(),
|
||||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
||||
|
||||
batch_size = 4
|
||||
|
||||
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
|
||||
download=True, transform=transform)
|
||||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
|
||||
shuffle=True, num_workers=2)
|
||||
|
||||
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
|
||||
download=True, transform=transform)
|
||||
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
|
||||
shuffle=False, num_workers=2)
|
||||
|
||||
classes = ('plane', 'car', 'bird', 'cat',
|
||||
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
|
||||
|
||||
########################################################################
|
||||
# Let us show some of the training images, for fun.
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# functions to show an image
|
||||
|
||||
|
||||
def imshow(img):
|
||||
img = img / 2 + 0.5 # unnormalize
|
||||
npimg = img.numpy()
|
||||
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
||||
plt.show()
|
||||
|
||||
|
||||
# get some random training images
|
||||
dataiter = iter(trainloader)
|
||||
images, labels = next(dataiter)
|
||||
|
||||
# show images
|
||||
imshow(torchvision.utils.make_grid(images))
|
||||
# print labels
|
||||
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))
|
||||
|
||||
|
||||
########################################################################
|
||||
# 2. Define a Convolutional Neural Network
|
||||
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
# Copy the neural network from the Neural Networks section before and modify it to
|
||||
# take 3-channel images (instead of 1-channel images as it was defined).
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(3, 6, 5)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(6, 16, 5)
|
||||
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Linear(120, 84)
|
||||
self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = torch.flatten(x, 1) # flatten all dimensions except batch
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
net = Net()
|
||||
|
||||
########################################################################
|
||||
# 3. Define a Loss function and optimizer
|
||||
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
|
||||
|
||||
import torch.optim as optim
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
|
||||
|
||||
########################################################################
|
||||
# 4. Train the network
|
||||
# ^^^^^^^^^^^^^^^^^^^^
|
||||
#
|
||||
# This is when things start to get interesting.
|
||||
# We simply have to loop over our data iterator, and feed the inputs to the
|
||||
# network and optimize.
|
||||
|
||||
for epoch in range(2): # loop over the dataset multiple times
|
||||
|
||||
running_loss = 0.0
|
||||
for i, data in enumerate(trainloader, 0):
|
||||
# get the inputs; data is a list of [inputs, labels]
|
||||
inputs, labels = data
|
||||
|
||||
# zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# forward + backward + optimize
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# print statistics
|
||||
running_loss += loss.item()
|
||||
if i % 2000 == 1999: # print every 2000 mini-batches
|
||||
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
|
||||
running_loss = 0.0
|
||||
|
||||
print('Finished Training')
|
||||
|
||||
########################################################################
|
||||
# Let's quickly save our trained model:
|
||||
|
||||
PATH = './cifar_net.pth'
|
||||
torch.save(net.state_dict(), PATH)
|
||||
|
||||
########################################################################
|
||||
# See `here <https://pytorch.org/docs/stable/notes/serialization.html>`_
|
||||
# for more details on saving PyTorch models.
|
||||
#
|
||||
# 5. Test the network on the test data
|
||||
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
#
|
||||
# We have trained the network for 2 passes over the training dataset.
|
||||
# But we need to check if the network has learnt anything at all.
|
||||
#
|
||||
# We will check this by predicting the class label that the neural network
|
||||
# outputs, and checking it against the ground-truth. If the prediction is
|
||||
# correct, we add the sample to the list of correct predictions.
|
||||
#
|
||||
# Okay, first step. Let us display an image from the test set to get familiar.
|
||||
|
||||
dataiter = iter(testloader)
|
||||
images, labels = next(dataiter)
|
||||
|
||||
# print images
|
||||
imshow(torchvision.utils.make_grid(images))
|
||||
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))
|
||||
|
||||
########################################################################
|
||||
# Next, let's load back in our saved model (note: saving and re-loading the model
|
||||
# wasn't necessary here, we only did it to illustrate how to do so):
|
||||
|
||||
net = Net()
|
||||
net.load_state_dict(torch.load(PATH))
|
||||
|
||||
########################################################################
|
||||
# Okay, now let us see what the neural network thinks these examples above are:
|
||||
|
||||
outputs = net(images)
|
||||
|
||||
########################################################################
|
||||
# The outputs are energies for the 10 classes.
|
||||
# The higher the energy for a class, the more the network
|
||||
# thinks that the image is of the particular class.
|
||||
# So, let's get the index of the highest energy:
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
|
||||
print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
|
||||
for j in range(4)))
|
||||
|
||||
########################################################################
|
||||
# The results seem pretty good.
|
||||
#
|
||||
# Let us look at how the network performs on the whole dataset.
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
# since we're not training, we don't need to calculate the gradients for our outputs
|
||||
with torch.no_grad():
|
||||
for data in testloader:
|
||||
images, labels = data
|
||||
# calculate outputs by running images through the network
|
||||
outputs = net(images)
|
||||
# the class with the highest energy is what we choose as prediction
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
|
||||
|
||||
########################################################################
|
||||
# That looks way better than chance, which is 10% accuracy (randomly picking
|
||||
# a class out of 10 classes).
|
||||
# Seems like the network learnt something.
|
||||
#
|
||||
# Hmmm, what are the classes that performed well, and the classes that did
|
||||
# not perform well:
|
||||
|
||||
# prepare to count predictions for each class
|
||||
correct_pred = {classname: 0 for classname in classes}
|
||||
total_pred = {classname: 0 for classname in classes}
|
||||
|
||||
# again no gradients needed
|
||||
with torch.no_grad():
|
||||
for data in testloader:
|
||||
images, labels = data
|
||||
outputs = net(images)
|
||||
_, predictions = torch.max(outputs, 1)
|
||||
# collect the correct predictions for each class
|
||||
for label, prediction in zip(labels, predictions):
|
||||
if label == prediction:
|
||||
correct_pred[classes[label]] += 1
|
||||
total_pred[classes[label]] += 1
|
||||
|
||||
|
||||
# print accuracy for each class
|
||||
for classname, correct_count in correct_pred.items():
|
||||
accuracy = 100 * float(correct_count) / total_pred[classname]
|
||||
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
|
||||
|
||||
########################################################################
|
||||
# Okay, so what next?
|
||||
#
|
||||
# How do we run these neural networks on the GPU?
|
||||
#
|
||||
# Training on GPU
|
||||
# ----------------
|
||||
# Just like how you transfer a Tensor onto the GPU, you transfer the neural
|
||||
# net onto the GPU.
|
||||
#
|
||||
# Let's first define our device as the first visible cuda device if we have
|
||||
# CUDA available:
|
||||
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
# Assuming that we are on a CUDA machine, this should print a CUDA device:
|
||||
|
||||
print(device)
|
||||
|
||||
########################################################################
|
||||
# The rest of this section assumes that ``device`` is a CUDA device.
|
||||
#
|
||||
# Then these methods will recursively go over all modules and convert their
|
||||
# parameters and buffers to CUDA tensors:
|
||||
#
|
||||
# .. code:: python
|
||||
#
|
||||
net.to(device)
|
||||
#
|
||||
#
|
||||
# Remember that you will have to send the inputs and targets at every step
|
||||
# to the GPU too:
|
||||
#
|
||||
# .. code:: python
|
||||
#
|
||||
inputs, labels = data[0].to(device), data[1].to(device)
|
||||
#
|
||||
# Why don't I notice MASSIVE speedup compared to CPU? Because your network
|
||||
# is really small.
|
||||
#
|
||||
# **Exercise:** Try increasing the width of your network (argument 2 of
|
||||
# the first ``nn.Conv2d``, and argument 1 of the second ``nn.Conv2d`` –
|
||||
# they need to be the same number), see what kind of speedup you get.
|
||||
#
|
||||
# **Goals achieved**:
|
||||
#
|
||||
# - Understanding PyTorch's Tensor library and neural networks at a high level.
|
||||
# - Train a small neural network to classify images
|
||||
#
|
||||
# Training on multiple GPUs
|
||||
# -------------------------
|
||||
# If you want to see even more MASSIVE speedup using all of your GPUs,
|
||||
# please check out :doc:`data_parallel_tutorial`.
|
||||
#
|
||||
# Where do I go next?
|
||||
# -------------------
|
||||
#
|
||||
# - :doc:`Train neural nets to play video games </intermediate/reinforcement_q_learning>`
|
||||
# - `Train a state-of-the-art ResNet network on imagenet`_
|
||||
# - `Train a face generator using Generative Adversarial Networks`_
|
||||
# - `Train a word-level language model using Recurrent LSTM networks`_
|
||||
# - `More examples`_
|
||||
# - `More tutorials`_
|
||||
# - `Discuss PyTorch on the Forums`_
|
||||
# - `Chat with other users on Slack`_
|
||||
#
|
||||
# .. _Train a state-of-the-art ResNet network on imagenet: https://github.com/pytorch/examples/tree/master/imagenet
|
||||
# .. _Train a face generator using Generative Adversarial Networks: https://github.com/pytorch/examples/tree/master/dcgan
|
||||
# .. _Train a word-level language model using Recurrent LSTM networks: https://github.com/pytorch/examples/tree/master/word_language_model
|
||||
# .. _More examples: https://github.com/pytorch/examples
|
||||
# .. _More tutorials: https://github.com/pytorch/tutorials
|
||||
# .. _Discuss PyTorch on the Forums: https://discuss.pytorch.org/
|
||||
# .. _Chat with other users on Slack: https://pytorch.slack.com/messages/beginner/
|
||||
|
||||
# %%%%%%INVISIBLE_CODE_BLOCK%%%%%%
|
||||
del dataiter
|
||||
# %%%%%%INVISIBLE_CODE_BLOCK%%%%%%
|
BIN
Filter_Analysis/data/cifar-10-batches-py/batches.meta
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/batches.meta
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_1
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_1
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_2
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_2
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_3
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_3
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_4
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_4
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_5
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/data_batch_5
Normal file
Binary file not shown.
1
Filter_Analysis/data/cifar-10-batches-py/readme.html
Normal file
1
Filter_Analysis/data/cifar-10-batches-py/readme.html
Normal file
@ -0,0 +1 @@
|
||||
<meta HTTP-EQUIV="REFRESH" content="0; url=http://www.cs.toronto.edu/~kriz/cifar.html">
|
BIN
Filter_Analysis/data/cifar-10-batches-py/test_batch
Normal file
BIN
Filter_Analysis/data/cifar-10-batches-py/test_batch
Normal file
Binary file not shown.
BIN
Filter_Analysis/data/cifar-10-python.tar.gz
Normal file
BIN
Filter_Analysis/data/cifar-10-python.tar.gz
Normal file
Binary file not shown.
@ -99,12 +99,44 @@ def threshold_filter(data, batch_size=64, threshold=0.5):
|
||||
return torch.tensor(filtered_images).float()
|
||||
|
||||
|
||||
def snap_colors(data, batch_size=64, quantizations=4):
|
||||
def bit_depth(data, batch_size=64, bits=16):
|
||||
images = pttensor_to_images(data)
|
||||
filtered_images = np.ndarray((batch_size,28,28,1))
|
||||
|
||||
for i in range(batch_size):
|
||||
filtered_images[i] = (images[i]*quantizations).astype(int).astype(float)/quantizations
|
||||
filtered_images[i] = (images[i]*(2**bits)).astype(int).astype(float)/(2**bits)
|
||||
|
||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||
return torch.tensor(filtered_images).float()
|
||||
|
||||
|
||||
'''
|
||||
Filter Options:
|
||||
- gaussian_blur
|
||||
- gaussian_kuwahara
|
||||
- mean_kuwahara
|
||||
- random_noise
|
||||
- threshold_filter
|
||||
- bilateral_filter
|
||||
- bit_depth
|
||||
'''
|
||||
def filtered(data, batch_size=64, strength=0, filter="gaussian_blur"):
|
||||
if filter == "threshold_filter":
|
||||
threshold = (2*strength + 1) / 10
|
||||
return threshold_filter(data, batch_size, threshold)
|
||||
elif filter == "bit_depth":
|
||||
bits = 2**strength
|
||||
return bit_depth(data, batch_size, bits)
|
||||
elif filter == "random_noise":
|
||||
intensity == 0.0005*(2*strength + 1)
|
||||
return random_noise(data, batch_size, intensity)
|
||||
else:
|
||||
strength = (2*strength + 1)
|
||||
if filter == "gaussian_blur":
|
||||
return gaussian_blur(data, batch_size, ksize=(strength, strength))
|
||||
elif filter == "bilateral_filter":
|
||||
return bilateral_filter(data, batch_size, d=strength)
|
||||
elif filter == "gaussian_kuwahara":
|
||||
return gaussian_kuwahara(data, batch_size, strength)
|
||||
elif filter == "mean_kuwahara":
|
||||
return mean_kuwahara(data, batch_size, strength)
|
||||
|
@ -8,6 +8,8 @@ from scipy import stats
|
||||
import matplotlib.pyplot as plt
|
||||
from mnist import Net
|
||||
|
||||
import json
|
||||
|
||||
import defense_filters
|
||||
|
||||
|
||||
@ -71,7 +73,7 @@ def denorm(batch, mean=[0.1307], std=[0.3081]):
|
||||
|
||||
return batch * std.view(1, -1, 1, 1) + mean.view(1, -1, 1, 1)
|
||||
|
||||
def test(model, device, test_loader, epsilon):
|
||||
def test(model, device, test_loader, epsilon, filter):
|
||||
# Original dataset correct classifications
|
||||
orig_correct = 0
|
||||
|
||||
@ -118,10 +120,8 @@ def test(model, device, test_loader, epsilon):
|
||||
|
||||
# Evaluate performance for
|
||||
for i in range(TESTED_STRENGTH_COUNT):
|
||||
strength = (2*i + 1)/10
|
||||
|
||||
# Apply the filter with the specified strength
|
||||
filtered_input = defense_filters.threshold_filter(perturbed_data_normalized, batch_size=len(perturbed_data_normalized), threshold=strength)
|
||||
filtered_input = defense_filters.filtered(perturbed_data_normalized, batch_size=len(perturbed_data_normalized), strength=i, filter=filter)
|
||||
# Evaluate the model on the filtered images
|
||||
filtered_output = model(filtered_input)
|
||||
# Get the predicted classification
|
||||
@ -153,33 +153,38 @@ def test(model, device, test_loader, epsilon):
|
||||
filtered_accuracies.append(correct_count/float(len(test_loader)))
|
||||
|
||||
|
||||
print(f"====== EPSILON: {epsilon} ======")
|
||||
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
|
||||
print(f"Unfiltered Accuracy = {unfiltered_correct} / {len(test_loader)} = {unfiltered_acc}")
|
||||
for i in range(TESTED_STRENGTH_COUNT):
|
||||
strength = (2*i + 1)/10
|
||||
print(f"Threshold Filter (threshold = {strength}) = {filtered_correct_counts[i]} / {len(test_loader)} = {filtered_accuracies[i]}")
|
||||
#print(f"====== EPSILON: {epsilon} ======")
|
||||
#print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
|
||||
#print(f"Unfiltered Accuracy = {unfiltered_correct} / {len(test_loader)} = {unfiltered_acc}")
|
||||
#for i in range(TESTED_STRENGTH_COUNT):
|
||||
# strength = i+1
|
||||
# print(f"{filter}({strength}) = {filtered_correct_counts[i]} / {len(test_loader)} = {filtered_accuracies[i]}")
|
||||
|
||||
return unfiltered_acc, filtered_accuracies
|
||||
|
||||
|
||||
unfiltered_accuracies = []
|
||||
filtered_accuracies = []
|
||||
accurracies = {}
|
||||
filters = ("gaussian_blur", "gaussian_kuwahara", "mean_kuwahara", "random_noise", "bilateral_filter", "bit_depth", "threshold_filter")
|
||||
|
||||
for eps in epsilons:
|
||||
unfiltered_accuracy, filtered_accuracy = test(model, device, test_loader, eps)
|
||||
unfiltered_accuracies.append(unfiltered_accuracy)
|
||||
filtered_accuracies.append(filtered_accuracy)
|
||||
for filter in filters:
|
||||
for eps in epsilons:
|
||||
unfiltered_accuracy, filtered_accuracy = test(model, device, test_loader, eps, filter)
|
||||
|
||||
if len(accuracies["unfiltered"] < len(epsilons):
|
||||
accuracies["unfiltered"].append(unfiltered_accuracy)
|
||||
accuracies[filter].append(filtered_accuracy)
|
||||
|
||||
json.dump(accuracies, "fgsm_accuracies.json")
|
||||
|
||||
# Plot the results
|
||||
plt.figure(figsize=(16,9))
|
||||
plt.plot(epsilons, unfiltered_accuracies, label="Attacked Accuracy")
|
||||
for i in range(TESTED_STRENGTH_COUNT):
|
||||
filtered_accuracy = [filter_eps[i] for filter_eps in filtered_accuracies]
|
||||
plt.plot(epsilons, filtered_accuracy, label=f"Threshold Filter (threshold = {(2*i + 1)/10})")
|
||||
|
||||
plt.legend(loc="upper right")
|
||||
plt.title("Threshold Filter Performance")
|
||||
plt.xlabel("Attack Strength ($\\epsilon$)")
|
||||
plt.ylabel("Accuracy")
|
||||
plt.savefig("Images/ThresholdFilterPerformance.png", )
|
||||
#plt.figure(figsize=(16,9))
|
||||
#plt.plot(epsilons, unfiltered_accuracies, label="Attacked Accuracy")
|
||||
#for i in range(TESTED_STRENGTH_COUNT):
|
||||
# filtered_accuracy = [filter_eps[i] for filter_eps in filtered_accuracies]
|
||||
# plt.plot(epsilons, filtered_accuracy, label=f"Bit Depth = {i + 1})")
|
||||
#
|
||||
#plt.legend(loc="upper right")
|
||||
#plt.title("Bit-Depth Reduction Performance")
|
||||
#plt.xlabel("Attack Strength ($\\epsilon$)")
|
||||
#plt.ylabel("Accuracy")
|
||||
#plt.savefig("Images/BitDepthReducePerformance.png", )
|
||||
|
Loading…
Reference in New Issue
Block a user