No success with adjusting CNN, set up VGG-16

This commit is contained in:
Aidan Sharpe 2024-04-25 14:41:00 -04:00
parent 6c4723a633
commit 2f0a6fc919
6 changed files with 89 additions and 22 deletions

View File

@ -0,0 +1 @@
,sharpe,dhcp-150-250-221-61,25.04.2024 11:36,file:///home/sharpe/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4;

Binary file not shown.

View File

@ -11,46 +11,62 @@ import torch.nn as nn
import torch.nn.functional as F
#import dla
import vgg
EPOCHS = 200
EPOCHS = 40
class CnnBlock(nn.Module):
def __init__(self, in_channels=3, out_channels=16):
super(CnnBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 2*in_channels, 3, 1)
self.conv2 = nn.Conv2d(2*in_channels, out_channels, 3, 1)
self.bn1 = nn.BatchNorm2d(2*in_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
return x
class CifarCNN(nn.Module):
def __init__(self):
super(CifarCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 96, 3, 1)
self.conv2 = nn.Conv2d(96, 192, 3, 1)
self.block1 = CnnBlock(3, 16)
self.block2 = CnnBlock(16, 64)
self.block3 = CnnBlock(64, 128)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(37632, 128)
self.fc2 = nn.Linear(128, 10)
self.fc1 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x,2)
x = self.block1(x)
x = self.dropout1(x)
x = F.max_pool2d(x,2)
x = self.block2(x)
x = F.max_pool2d(x,2)
x = self.dropout2(x)
x = self.block3(x)
x = torch.flatten(x,1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(model, trainloader, optimizer, epoch):
def train(model, trainloader, device, optimizer, criterion, epoch):
running_loss = 0.0
for i, [data, target] in enumerate(trainloader, 0):
data, target = data.to(device), target.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
output = model(data)
loss = F.nll_loss(output, target)
loss = criterion(output, target)
loss.backward()
optimizer.step()
@ -61,13 +77,14 @@ def train(model, trainloader, optimizer, epoch):
running_loss = 0.0
def test(model, testloader, classes):
def test(model, testloader, device, classes):
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data, target in testloader:
data, target = data.to(device), target.to(device)
# calculate outputs by running images through the network
output = model(data)
# the class with the highest energy is what we choose as prediction
@ -85,6 +102,7 @@ def test(model, testloader, classes):
# again no gradients needed
with torch.no_grad():
for data, target in testloader:
data, target = data.to(device), target.to(device)
output = model(data)
_, predictions = torch.max(output, 1)
# collect the correct predictions for each class
@ -121,15 +139,16 @@ def main():
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = CifarCNN().to(device)
model = vgg.VGG('VGG16').to(device)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
criterion = nn.CrossEntropyLoss()
for epoch in range(EPOCHS):
train(model, trainloader, optimizer, epoch)
test(model, testloader, classes)
train(model, trainloader, device, optimizer, criterion, epoch)
test(model, testloader, device, classes)
PATH = './cifar_cnn.pth'
PATH = './cifar_vgg.pth'
torch.save(model.state_dict(), PATH)

Binary file not shown.

47
Filter_Analysis/vgg.py Normal file
View File

@ -0,0 +1,47 @@
'''VGG11/13/16/19 in Pytorch.'''
import torch
import torch.nn as nn
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG(nn.Module):
def __init__(self, vgg_name):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(512, 10)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
def test():
net = VGG('VGG11')
x = torch.randn(2,3,32,32)
y = net(x)
print(y.size())
# test()