Poster basically done, finished organizing directory structure
BIN
poster/references_dir.png
Normal file
After Width: | Height: | Size: 48 KiB |
BIN
poster/src_dir.png
Normal file
After Width: | Height: | Size: 48 KiB |
10296
references/Brief_review_of_image_denoising_techniques.pdf
Normal file
BIN
references/Intriguing_properties_of_neural_networks.pdf
Normal file
18841
references/Yu_Deep_Layer_Aggregation_CVPR_2018_paper.pdf
Normal file
Before Width: | Height: | Size: 125 KiB After Width: | Height: | Size: 125 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 130 KiB After Width: | Height: | Size: 130 KiB |
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 163 KiB |
Before Width: | Height: | Size: 158 KiB After Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 69 KiB After Width: | Height: | Size: 69 KiB |
Before Width: | Height: | Size: 202 B |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 44 KiB |
59
src/]
@ -1,59 +0,0 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
import copy
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
data = {}
|
||||
with open("results/cifar10_fgsm.json", "r") as infile:
|
||||
data = json.load(infile)
|
||||
|
||||
attack = data["attack"]
|
||||
epsilons = data["epsilons"]
|
||||
filters = data["filters"]
|
||||
dataset = data["dataset"]
|
||||
strength_count = len(filters[list(filters.keys())[0]][0])
|
||||
|
||||
strengths = np.arange(strength_count)
|
||||
epsilons = np.array(epsilons)
|
||||
|
||||
# Assume constant step of strength and epsilon
|
||||
dstrength = strengths[1] - strengths[0]
|
||||
depsilon = epsilons[1] - epsilons[0]
|
||||
|
||||
# Make a grid from strengths and epsilons
|
||||
strengths, epsilons = np.meshgrid(strengths,epsilons)
|
||||
#strengths, epsilons = strengths.ravel(), epsilons.ravel()
|
||||
|
||||
colors = ('blue', 'orange', 'red', 'purple', 'green', 'yellow', 'brown')
|
||||
|
||||
z = np.zeros_like(strengths)
|
||||
best_performance = np.zeros_like(strengths)
|
||||
bottoms = np.zeros_like(strengths)
|
||||
|
||||
for i, filter in enumerate(filters):
|
||||
performance = np.array(filters[filter])
|
||||
best_performance = np.where(performance > best_performance, i, best_performance)
|
||||
z = np.where(performance > z, performance, z)
|
||||
print(best_performance)
|
||||
|
||||
for i, filter in enumerate(filters):
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
|
||||
tops = np.where(best_performance == i, best_performance, 0)
|
||||
print(strengths.shape, epsilons.shape, bottoms.shape, dstrength.shape, depsilon.shape, tops.shape)
|
||||
ax.bar3d(strengths, epsilons, bottoms, dstrength, depsilon, tops, color=colors[i])
|
||||
plt.show()
|
||||
|
||||
ax.view_init(90, -90, 0)
|
||||
|
||||
plt.legend()
|
||||
plt.title(f"{filter} Performance")
|
||||
plt.xlabel(f"{attack} Attack Strength ($\\epsilon$)")
|
||||
plt.ylabel(f"{dataset} Classification Accuracy")
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 266 KiB |