Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/Lab-04/lab-4.tex
2024-04-17 20:02:38 -04:00

78 lines
2.8 KiB
TeX

\documentclass{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{listings}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage[margin=1in]{geometry}
\title{Discrete Fourier Transforms and Z-Transforms}
\author{Aidan Sharpe \& Elise Heim}
\DeclareMathOperator{\sinc}{sinc}
\begin{document}
\begin{titlepage}
\maketitle
\end{titlepage}
\section{Results \& Discussion}
\subsection{The Discrete Fourier Transform (DFT)}
Given a signal, $x[n]$, it's $N$-point DFT is given by
\begin{equation}
X_k = \sum_{n=0}^{N-1} x[n] W_N^{kn},
\label{eqn:DFT_def}
\end{equation}
where $W_N = e^{-j2\pi/N}$. The discrete Fourier transform is the sampled version of the discrete time Fourier transform (DTFT), which is a continuous function. More specifically, the $N$-point DFT contains $N$ samples from the continuous DTFT.
\\
\\
For example, consider the signal $x[n] = (-1)^n$ for $0 \le n \le N-1$. By evaluating the sum shown in equation \ref{eqn:DFT_def} as a truncated geometric series, the $N$-point DFT of $x[n]$ can be found. All truncated geometric series are evaluated as
\begin{equation}
\sum_{k=0}^{n-1} a r^k =
\begin{cases}
an & r = 1 \\
a\left({1 - r^n \over 1 - r}\right) & r \ne 1
\end{cases},
\end{equation}
where $r$ is the common ratio between adjacent terms. For the $N$-point DFT of $x[n]$, the common ratio is $-W_N^k$, which takes a value of 1 for $k = {N\over2}$. Therefore, the $N$-point DFT of $x[n]$ is
\begin{equation}
X[k] = \begin{cases}
N & k = {N \over 2} \\
\left({1 - (-W_N^k)^N \over 1 - (-W_N^k)}\right) & k \ne {N \over 2}
\end{cases}.
\label{eqn:DFT_N_point}
\end{equation}
The $N$-point DFT of $x[n]$, where $N=8$ is seen in figure \ref{fig:N_point_DFT}. It only has a non-zero value for $k={N\over2}=4$. This is the case for all even-number-point DFTs. Therefore only odd-number-point DFTs should be used.
\begin{figure}[h]
\center
\includegraphics[width=0.5\textwidth]{N8_point_DFT.png}
\caption{The $N$-point DFT of $x[n]$, where $N=8$}
\label{fig:N_point_DFT}
\end{figure}
For example, the 9-point DFT of $x[n]$, where $N=8$ is seen in figure \ref{fig:9_point_DFT}. While equation \ref{eqn:DFT_N_point} cannot be used because there are a different number of samples for the DFT and the input signal, the overall DFT is more useful than the 8-point DFT.
\begin{figure}[h]
\center
\includegraphics[width=0.5\textwidth]{Q9_point_DFT.png}
\label{fig:9_point_DFT}
\end{figure}
\subsection{The Z-Transform}
Given a discrete signal, $x[n]$, its z-transform is given by
\begin{equation}
X(z) = \sum_n x[n] z^{-n}
\end{equation}
where $z$ is a complex variable.
\subsection{The Inverse Z-Transform}
\section{Conclusions}
\end{document}