Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/obj_evaluation/comp_snr.m
2024-04-25 18:38:09 -04:00

133 lines
5.1 KiB
Matlab

function [snr_mean, segsnr_mean]= comp_SNR(cleanFile, enhdFile);
%
% Segmental Signal-to-Noise Ratio Objective Speech Quality Measure
%
% This function implements the segmental signal-to-noise ratio
% as defined in [1, p. 45] (see Equation 2.12).
%
% Usage: [SNRovl, SNRseg]=comp_snr(cleanFile.wav, enhancedFile.wav)
%
% cleanFile.wav - clean input file in .wav format
% enhancedFile - enhanced output file in .wav format
% SNRovl - overall SNR (dB)
% SNRseg - segmental SNR (dB)
%
% This function returns 2 parameters. The first item is the
% overall SNR for the two speech signals. The second value
% is the segmental signal-to-noise ratio (1 seg-snr per
% frame of input). The segmental SNR is clamped to range
% between 35dB and -10dB (see suggestions in [2]).
%
% Example call: [SNRovl,SNRseg]=comp_SNR('sp04.wav','enhanced.wav')
%
% References:
%
% [1] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements,
% Objective Measures of Speech Quality. Prentice Hall
% Advanced Reference Series, Englewood Cliffs, NJ, 1988,
% ISBN: 0-13-629056-6.
%
% [2] P. E. Papamichalis, Practical Approaches to Speech
% Coding, Prentice-Hall, Englewood Cliffs, NJ, 1987.
% ISBN: 0-13-689019-9. (see pages 179-181).
%
% Authors: Bryan L. Pellom and John H. L. Hansen (July 1998)
% Modified by: Philipos C. Loizou (Oct 2006)
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin ~=2
fprintf('USAGE: [snr_mean, segsnr_mean]= comp_SNR(cleanFile, enhdFile) \n');
return;
end
[data1, Srate1, Nbits1]= wavread(cleanFile);
[data2, Srate2, Nbits2]= wavread(enhdFile);
if (( Srate1~= Srate2) | ( Nbits1~= Nbits2))
error( 'The two files do not match!\n');
end
len= min( length( data1), length( data2));
data1= data1( 1: len);
data2= data2( 1: len);
[snr_dist, segsnr_dist]= snr( data1, data2,Srate1);
snr_mean= snr_dist;
segsnr_mean= mean( segsnr_dist);
% =========================================================================
function [overall_snr, segmental_snr] = snr(clean_speech, processed_speech,sample_rate)
% ----------------------------------------------------------------------
% Check the length of the clean and processed speech. Must be the same.
% ----------------------------------------------------------------------
clean_length = length(clean_speech);
processed_length = length(processed_speech);
if (clean_length ~= processed_length)
disp('Error: Both Speech Files must be same length.');
return
end
% ----------------------------------------------------------------------
% Scale both clean speech and processed speech to have same dynamic
% range. Also remove DC component from each signal
% ----------------------------------------------------------------------
%clean_speech = clean_speech - mean(clean_speech);
%processed_speech = processed_speech - mean(processed_speech);
%processed_speech = processed_speech.*(max(abs(clean_speech))/ max(abs(processed_speech)));
overall_snr = 10* log10( sum(clean_speech.^2)/sum((clean_speech-processed_speech).^2));
% ----------------------------------------------------------------------
% Global Variables
% ----------------------------------------------------------------------
winlength = round(30*sample_rate/1000); %240; % window length in samples for 30-msecs
skiprate = floor(winlength/4); %60; % window skip in samples
MIN_SNR = -10; % minimum SNR in dB
MAX_SNR = 35; % maximum SNR in dB
% ----------------------------------------------------------------------
% For each frame of input speech, calculate the Segmental SNR
% ----------------------------------------------------------------------
num_frames = clean_length/skiprate-(winlength/skiprate); % number of frames
start = 1; % starting sample
window = 0.5*(1 - cos(2*pi*(1:winlength)'/(winlength+1)));
for frame_count = 1: num_frames
% ----------------------------------------------------------
% (1) Get the Frames for the test and reference speech.
% Multiply by Hanning Window.
% ----------------------------------------------------------
clean_frame = clean_speech(start:start+winlength-1);
processed_frame = processed_speech(start:start+winlength-1);
clean_frame = clean_frame.*window;
processed_frame = processed_frame.*window;
% ----------------------------------------------------------
% (2) Compute the Segmental SNR
% ----------------------------------------------------------
signal_energy = sum(clean_frame.^2);
noise_energy = sum((clean_frame-processed_frame).^2);
segmental_snr(frame_count) = 10*log10(signal_energy/(noise_energy+eps)+eps);
segmental_snr(frame_count) = max(segmental_snr(frame_count),MIN_SNR);
segmental_snr(frame_count) = min(segmental_snr(frame_count),MAX_SNR);
start = start + skiprate;
end