Rowan-Classes/1st-Semester-Fall-2021/Calc III/Project_Three.nb
2024-02-22 14:31:08 -05:00

4248 lines
223 KiB
Mathematica
Executable File

(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 228043, 4239]
NotebookOptionsPosition[ 224368, 4182]
NotebookOutlinePosition[ 224816, 4199]
CellTagsIndexPosition[ 224773, 4196]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[{
StyleBox["Mathematica: Project 3 ",
FontWeight->"Bold"],
"\n\t "
}], "Subtitle",
CellChangeTimes->{{3.800654337759754*^9, 3.800654415282057*^9}, {
3.800655175179393*^9, 3.8006551768022738`*^9}, {3.800655210770352*^9,
3.800655211785523*^9}, {3.800655305000224*^9, 3.8006553115273523`*^9},
3.813700605495866*^9},
TextAlignment->Center,ExpressionUUID->"ea3c182f-33ba-4957-8bf6-08f144281741"],
Cell[TextData[{
"1)\tEvaluate the given iterated integrals and plot the solid corresponding \
to each one.\n\t\ta)\t ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "1"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
SuperscriptBox["x", "2"]],
RowBox[{
RowBox[{"(",
RowBox[{"4", "-",
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ")"}],
RowBox[{"\[DifferentialD]", "y"}],
RowBox[{"\[DifferentialD]", "x"}]}]}]}], TraditionalForm]],
ExpressionUUID->"5953d7b5-3df1-4402-b87d-c2a4e630a42b"],
"\t\tb)\t ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "4"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
SqrtBox[
RowBox[{"2", "-",
SuperscriptBox["y", "2"]}]]],
RowBox[{
SuperscriptBox["x", "2"], " ", "y",
RowBox[{"\[DifferentialD]", "x"}],
RowBox[{"\[DifferentialD]", "y"}]}]}]}], TraditionalForm]],
ExpressionUUID->"4989ab17-503f-4925-80af-4bf7003033a3"],
"\t\tc)\t ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "1"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "x"],
RowBox[{
FractionBox["y",
RowBox[{"1", "+",
RowBox[{"x", " ", "y"}]}]],
RowBox[{"\[DifferentialD]", "y"}],
RowBox[{"\[DifferentialD]", "x"}]}]}]}], TraditionalForm]],
ExpressionUUID->"150daef1-e713-4b4a-ae3f-1e77925b065a"]
}], "Text",
CellChangeTimes->{{3.398167808765625*^9, 3.398167837515625*^9}, {
3.39816795846875*^9, 3.39816824128125*^9}, {3.398168277765625*^9,
3.398168375875*^9}, {3.398168423671875*^9, 3.39816849215625*^9}, {
3.398170094265625*^9, 3.398170097984375*^9}, {3.399888649515625*^9,
3.3998886865625*^9}, {3.39988874425*^9, 3.399888815515625*^9}, {
3.39988891340625*^9, 3.3998889150625*^9}, {3.39988902503125*^9,
3.399889119984375*^9}, {3.401384922609375*^9, 3.40138492575*^9}, {
3.403518477671875*^9, 3.403518490734375*^9}, {3.4037870771875*^9,
3.40378716153125*^9}, {3.40378719890625*^9, 3.4037873074375*^9}, {
3.403787341578125*^9, 3.4037875445625*^9}, {3.4037886363125*^9,
3.403788815609375*^9}, {3.40382676728125*^9, 3.403826931375*^9}, {
3.404295409984375*^9, 3.4042955063125*^9}, {3.404295537765625*^9,
3.404295698796875*^9}, {3.404297615390625*^9, 3.404297639234375*^9}, {
3.404298183421875*^9, 3.40429819090625*^9}, {3.4972703554593267`*^9,
3.4972703946890955`*^9}, {3.497270494517521*^9, 3.4972705064559274`*^9}, {
3.4972713902400694`*^9, 3.497271391320906*^9}, {3.4972714591316605`*^9,
3.4972714605257835`*^9}, 3.5027205812218046`*^9, {3.800655486924819*^9,
3.800655526355001*^9}},ExpressionUUID->"c154f282-4207-417c-8ee1-\
895b89485aa2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"4", "-",
RowBox[{"x", "^", "2"}], "+",
RowBox[{"y", "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"x", "^", "2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"x", "^", "2"}], "y"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"Sqrt", "[",
RowBox[{"2", "-",
RowBox[{"y", "^", "2"}]}], "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "4"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"y", "/",
RowBox[{"(",
RowBox[{"1", "+", "xy"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "x"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.84850897650348*^9, 3.8485090933705397`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"118c63b9-121d-4fbb-b358-1ffc703912ce"],
Cell[BoxData[
FractionBox["124", "105"]], "Output",
CellChangeTimes->{3.848509095461936*^9},
CellLabel->"Out[1]=",ExpressionUUID->"170ecad8-ffb4-482b-817b-b27633ee0f4a"],
Cell[BoxData[
RowBox[{
FractionBox["4", "15"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "-",
RowBox[{"49", " ", "\[ImaginaryI]", " ",
SqrtBox["14"]}]}], ")"}]}]], "Output",
CellChangeTimes->{3.8485090970879*^9},
CellLabel->"Out[2]=",ExpressionUUID->"59ce63f5-e263-4502-9b9b-a6441dc52b01"],
Cell[BoxData[
FractionBox["1",
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{"1", "+", "xy"}], ")"}]}]]], "Output",
CellChangeTimes->{3.848509097103557*^9},
CellLabel->"Out[3]=",ExpressionUUID->"150646fc-af6c-4ab9-afb5-c23e09eea286"]
}, Open ]],
Cell[TextData[{
"2)\t Evaluate the given double integrals and plot the solid corresponding \
to each one.\n\t\ta)\t",
Cell[BoxData[
FormBox[
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "D"],
RowBox[{
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}],
RowBox[{"\[DifferentialD]", "A"}]}]}]}], TraditionalForm]],
ExpressionUUID->"7154772c-8b8d-44a6-b539-1614b5e2646b"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"D", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"x", ",", "y"}], ")"}], ":",
RowBox[{"0", "\[LessEqual]", "x", "\[LessEqual]", "3"}]}], ",",
RowBox[{"0", "\[LessEqual]", "y", "\[LessEqual]",
SqrtBox["x"]}]}], "}"}]}], TraditionalForm]],ExpressionUUID->
"3340847a-91ee-46a0-8bdb-53a7ec6f497d"],
" \t\n\t\t\n\t\tb)\t",
Cell[BoxData[
FormBox[
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "D"],
RowBox[{
SqrtBox[
RowBox[{"x", "+", "y"}]],
RowBox[{"\[DifferentialD]", "A"}]}]}]}], TraditionalForm]],
ExpressionUUID->"f8bd881f-e261-49a9-8b47-5ca96b94ff32"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"D", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"x", ",", "y"}], ")"}], ":",
RowBox[{"0", "\[LessEqual]", "x", "\[LessEqual]",
RowBox[{"1", "-",
SuperscriptBox["y", "2"]}]}]}], ",",
RowBox[{"0", "\[LessEqual]", "y", "\[LessEqual]", "1"}]}], "}"}]}],
TraditionalForm]],ExpressionUUID->"5d46b9bc-3632-4752-990a-0ae9271b5c76"],
"\n\t\t\n\t\tc)\t",
Cell[BoxData[
FormBox[
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "D"],
RowBox[{
SuperscriptBox["e",
RowBox[{"x", "+", "y"}]],
RowBox[{"\[DifferentialD]", "A"}]}]}]}], TraditionalForm]],
ExpressionUUID->"79e9815f-9a46-4b67-8363-4c69a53422c9"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{"D", "=",
RowBox[{"{",
RowBox[{
RowBox[{"(",
RowBox[{"x", ",", "y"}], ")"}], ":",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], "\[LessEqual]", "4"}]}], "}"}]}],
TraditionalForm]],ExpressionUUID->"fa8c49cf-f35e-4141-b07b-484109bf08c0"]
}], "Text",
CellChangeTimes->{{3.398167808765625*^9, 3.398167837515625*^9}, {
3.39816795846875*^9, 3.39816824128125*^9}, {3.398168277765625*^9,
3.398168375875*^9}, {3.398168423671875*^9, 3.39816849215625*^9}, {
3.398170094265625*^9, 3.398170097984375*^9}, {3.399888649515625*^9,
3.3998886865625*^9}, {3.39988874425*^9, 3.399888815515625*^9}, {
3.39988891340625*^9, 3.3998889150625*^9}, {3.39988902503125*^9,
3.399889119984375*^9}, {3.401384922609375*^9, 3.40138492575*^9}, {
3.403518477671875*^9, 3.403518490734375*^9}, {3.4037870771875*^9,
3.40378716153125*^9}, {3.40378719890625*^9, 3.4037873074375*^9}, {
3.403787341578125*^9, 3.4037875445625*^9}, {3.4037886363125*^9,
3.403788815609375*^9}, {3.40382676728125*^9, 3.403826931375*^9}, {
3.404295409984375*^9, 3.4042954999375*^9}, {3.404295701984375*^9,
3.404295788734375*^9}, {3.404295823234375*^9, 3.404295867640625*^9}, {
3.40429590146875*^9, 3.404295923296875*^9}, {3.404295991640625*^9,
3.4042961435625*^9}, {3.40429619478125*^9, 3.4042961956875*^9}, {
3.404296230125*^9, 3.404296277171875*^9}, {3.40429647040625*^9,
3.40429654703125*^9}, {3.404297643765625*^9, 3.40429765140625*^9}, {
3.404298195*^9, 3.404298205296875*^9}, {3.404298905703125*^9,
3.40429890684375*^9}, {3.4972703369650683`*^9, 3.4972703396294956`*^9}, {
3.497271186823429*^9, 3.49727120729671*^9}, {3.4972714628441*^9,
3.497271463877944*^9}, 3.5027205853009996`*^9, {3.800655535539011*^9,
3.800655600105566*^9}},ExpressionUUID->"10a7a4b4-4d71-49d7-a627-\
f6318fd9516d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"x", "+", "y"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"Sqrt", "[", "x", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"x", "+", "y"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"Sqrt", "[", "3", "]"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"x", "+", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"1", "-",
RowBox[{"y", "^", "2"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "1"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"x", "+", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "1"}], "}"}]}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{"4", "-",
RowBox[{"y", "^", "2"}]}], "]"}]}], ",", " ",
RowBox[{"Sqrt", "[",
RowBox[{"4", "-",
RowBox[{"y", "^", "2"}]}], "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", " ",
RowBox[{"-", "2"}], ",", " ", "2"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "2"}], ",", " ", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", " ",
RowBox[{"-", "2"}], ",", " ", "2"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.848509121594901*^9, 3.848509336588105*^9}, {
3.8485093673539476`*^9, 3.8485096271348553`*^9}, {3.8485098036733847`*^9,
3.848509896330559*^9}, {3.8485099422724886`*^9, 3.8485099447545905`*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"51410cea-5b1b-4dbf-a804-f445beeecefd"],
Cell[BoxData[
RowBox[{
FractionBox["9", "20"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"8", " ",
SqrtBox["3"]}]}], ")"}]}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.848509948455171*^9},
CellLabel->"Out[28]=",ExpressionUUID->"193642ab-bf0f-41c2-bb13-710389d826e1"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1nHk41O8X98e+L2mRhJSKpNJCCz7TJiotkpRQUbTQro20KiKlEhEpbbSq
EKEikWQJLZI9jH1nmPHo+7vPuZ/Hc9U/c83r+lzjeJnOzLznPkd9y27zrYIs
FstAhMUSGrhtET45NOu9j5HWrIumnBsnjGRunntS9CTA6Obi4q1xzpkMcD3O
hd2vB+4LFKd5xDoXITebGiocN3D/xoWV20z9K5G/nZnw4O/9Fw8SpGOd65D/
WD1x5d/7f8qvrPfXaEF+JDbj6N/7+1syJpv6tyMXTes3+3uf9d+/buRX8mep
/73vK6v3Nca5F/mYip3tf++PUtl1z7mIj/xxS/jHv/e/Ds818NcQYANXYe0y
+3tf6b/rBZHbi4nF/r1vpyEmb+ovjPyh7O0xf+/f1b59RMNUFHnTcEPvv/fr
pxtW9PeLIddT+d729z541je71NEblczcb6r17R+4Bc/AR8eYTysKL0DPwCce
vmZk/agMPQOff02gKv1cDXoGviHa+YKefRN6Bv66un6kuVobegZu3Dm2Xty3
Ez0D/yq8PjmZ24OegW8a6ufv6sRDz8C7LpVHj9jJYoNn4IaB7qNb1QXRM/DT
YSM9s74LoWfgGfdeND3wE0HPwOWerFh/xlgMPQO3fFX73o4njp5DH5TVcaOy
mcIjsnF9A7fgGbjqoZIHP3yK0TPwB9+Ljv4Mr0LPwN93LFE3ca9Hz8CdJX5W
bHjUgp6BcxXlY4eM6kDPwM9NMPZOP9eNnoEPm+Vm49HRi56Bhy+MnqZn34+e
gStqtZ90dRJAz8BtpvnVrVYTQs/A7+hPWqtTKIyegdcafUgS9xVFz8CnGm/S
rFwojp6Bu5r1Xk7mSqDnVdfcG3vffmPqeVfy+wZuwTNwudEx8vUJ5egZuOac
sbHrr9eiZ+Dq2h+f2M9pRs/An8zhnRx1vw09A59rMmNt7rAu9Az8o+V2zfOn
uOgZuMXWsF6jZh56Bt78ekc19wmLDZ6B678TWV24VRA9A3dPvxX/fLQwegae
kj1Pw/erCHoGLvGt0NfJWww9A1/5e2/XwvkS6Bl4QJX0ZrVuSfS82lLSkRtV
wjQkjTHrHbgFz8AvufUt3/n8D3oG/jDIqe27TwN6Br7ZmrN83MxW9Ay8cfuY
MT/DO9Az8KOHLdsuyfWgZ+Bi53zSlrj3oWfgV6+9D+Jz+tEz8CHmbjEbHgmg
Z+Dr1iuO0bMXQs/Ab26K9hoySgQ9A69wNGurzxFFz8C1dtdsTD8njp6B73Y9
nXbHSBI9A49xV53m0SGFnh9eyNztllnBdCUXlv+9Bc/A5YsXeHHucdAz8OHu
3xQnv2tGz8BvX5CpK5/Sjp6BT7mxMCkopAs9A49/cOTyKsle9AzcJPapg9hh
PnoGzilvVS5pZbHBM3Bdju/Z+IeC6Bn4oRbNpmubhNEz8MTuFKu9iqLoGbgQ
y+798i9i6Bm4qRhXW/OsBHoG7id77ZqQgRR6Bl44fFr/71Zp9Dypfsij3rfV
zOExKmp9A7fgGfhlQ68P20Ma0TPwtY+5r+oSWtEz8PKEaV63tTrRM3CXT9s2
rr/eg56B934PmSovwkPPwFP3bz9pP4fFBs/AJY8J1xk1C6Bn4KtPhVmMui+E
noEHes1N6rARQc/Af18qmJg7TAw9A9cI3HP5UaY4ega+I0yq99wpSfQM/Nm9
ew72c6TRM/DOx/O/GDXLoOeo5VY1R2PqmJ4T9tbHBm7BM3CJ7OoT7SYt6Bl4
QLGKRVRMO3oGPrZ+zcQtGt3oGfhTrhd3pH8vegZuIPE2K7ufj56BV0odW5Wi
J4CegWsPHREf2iCInoHvHfV83NEIYfQMPE59ue9aa1H0DJyvWd05TUEcPQNf
NO3UJukMCfQM3Ftf5VO1hxR6Bp5jFDcjRU8GPQNXNF5zM7RBFj1PfhyqwY1q
Yo6WPbz+9xY8A1/aL6n2cmEbegZeKDO/dcfzTvQM3H70oQ/qalz0DLx50uPA
7z489Aw8KaTl1RJ3Fhs8AxeO8FEbN1MQPQNfFjXRi88RQs/A/aPft/4IF0HP
wL+/ttn4ykoMPQNXfdf94ZKcBHoG7pB+ZequNEn0DDwye0rQEndp9Iy/V2GG
4LiZsugZuP5vh118jhx6LvTc9+xNTgvDG9Nd+/cWPAP3njolcb9RB3oGPsLI
4dKkR93oGfid5Tfsy5T60DPwadY5eoHn+tEz8N8zhc7ePyqAnoFrGIQ2ntIV
Qs/Ady6cY2VbI4yegUcvzX83J0wUPQPvXr1be7ilOHoGbrRe8lqztCR6Bn5m
011+ZooUegb+yZHtdP+oDHoGLr+7KPeUrhx6Bj55XoLK1APy6HlE7LUVbplt
jOFq5fN/b8Ez8E92q61nzOlCz8AtXc5N4dzjomfgFW6JAuHD+OgZeNyHIxzt
dyw2eAbO/zzMQuywIHoGvij/aWL5FGH0DPxC0dKJSVUi6Bl4XnnVpaAQMfQM
fCTnBPfAGgn0DNy2RdlhlaQUegYe0R2Tpf1OGj0D5/Sv1hc7LIuegQeedl21
V1EePQM3EFskUtJKPVtWx9XPS+tg3E8aTTAYuAXPwCUvHehpndGDnoEHhEZ+
fhjeh56B+1s2r3wmxmKDZ+DfbS68vpAkgJ6Bq26dMM7xoBB6Bu6w653Pgski
6Bl41P6NnSoVougZeOvRLrueIHH0DHz2Kf+M/FWS6Bn4cS+dGc/EpNEz8NRL
6SEXkmTQM3oItBd1PCiHnoE/WNmvrx5APQNf/vVz/cW9Q9BzgOIv7963XUzi
882pf2/BM/Clb69fj57Si56BF37J2rE9hI+egUc3CqjJiwigZ+DdHSHn6xIE
0TNwI55+a9o+YfQM/IzwV+vbWqLoGXimlMsH91Ix9AxcYajE1PXXJdAzcKtR
EYEzV0ihZ+Ch6oygvIgMegZeqflzZ12CLHoGPjwwfof9HHn0DDxO+bxa7rAh
6Bn4xrC1+UbN1HPhkn7NhIQehld2ZsvfW+zPhHs3x8/ap8Wj/ZnwCx6Hz1xd
xmJjfyY8z3No425BQfQMfOTFJ+uWvRZCz8Btr5m+m7BHhPZnwiNCKicJThSj
/ZnwujseV4uLxWl/Jnx61Ch+3FVJ2p8JPxz9yvHqMmnanwlPer0qd7egLO3P
hAu/q5u77LUc7c+Ej3dYaD40jnoGnl4tL3byCvUMfNfO3wmNLgroWfHw2I9H
Y3oZI4UHrGMDt+AZeOaY3191NfrRM/BHit5r2k0E0DPwVtXxidn91DPw2RPe
ToiKEUbPwI/rWF/ydBZFz8A/zOzs2awhjp6BSxtctjcskkDPwM0XTs4a6S+F
noEHLv2o124ig56B/1695VZ2P/UM3P8R/8xaa3n0DHzWtM9zUvSGoGfg318E
NU5TUEDPwN30He+ENiiwC0ZITo93TmC2BzSI86OeMiJ72cG/wj8w4B+4adGt
OSKPnjImT3dP8dcQYwO/vfXKhAV3aE4F3Lh2U9HT4+L4+J0l8t2jXnMZ+5O6
wZ27+/DxgascDdBVHriFxwd+W86gwI+twAYO9UceZGVUe9D6IYcU2+S4+M3A
fbgeuH+QJPP3PlwPj3NGaeEOS2ceA/XDzz2Qe/up8RMF9uLX9p8SnaOYLM0H
UwUfhTGFf5T3loS/YkbtLRQ39RdjA9/1bpZMeK4YXi/6KKjkk34vk5NRnzV7
aB9eD/zindUGitfp8xwe52K07GX5gVu4Hup3sN6r9Pc+PD7UX3bt4Kuay31Y
Pzz+YeGzD1uzaP2Y6y5TbXk3cB+uh59rdDqkeh1Dc0V4HB1jNaXMgVuoB37u
lcIZeikxCmx5/fv+Aqx0zEULn8Sm9XO+Mge+XHrEYn2nOfkYJ12BgfvA4fp3
Ze0P+zklzDNW9RIWqxyvL3xo7v33PnC4fp1kUJpHRxUz4cbZOSxWDV6/fGHL
sb/3gcP1WXf04zw66piQGRraLFYjXv/+l5/z3/vA4fpw1br8ZG4z47VtsyyL
1YrXj553ferf+8Dh+o0747OSuQPv115ME2OxOvD6b+e2af693//fvy7k/iTP
h+vhcRTjvNKSuZ14PfA8kkvHL8/u7u/n0u8j1EVGsVi9yOF639WaccncPuZg
UGhLfz8Prxd3yVdgsfjI4XrT0K5nydx+ZmSbXke/Bwufb1uKc0VYJ1hs4HD9
qYMV+XbuAmzX/x6Hfr/w9vQcQRZLEDlcX6q8LNeOJ8jOZ0Qb+z2E8HrVSeH8
v/eBw/VG76Oz7NyF2dP/OHP6++n3EW454r1/7wOH60OcRn2y44mwL/kU/On3
oN9T/HTd0/X3PnC4nit7Ks3OXQyft5D3ft+9iOEXFOHzE/iWXPaQfk4FPg/x
+h0lgv2cWny+AV8hfLydz2nC5xXw8hWy+z066PMH+M3g4p0eHR34fABuVfPI
waOjG58PwIeS/Bz+7sC/nFxm6dFB/77AFzn63k/m0r8j8NsyHXeSj9K/F3DW
y423krn07wLcdkNqSPJREfQP/A1rclAyl3oGPur+lWvJR8XRM+S9uwJrrI+X
lqFn4OW658yOl1ajZ+BWmeOZ46UN6Bm44/QtI5nmFvQMfKyH7hCmuR09Ay/O
ZEkyzV3oGXjgyBxBppmLnoGvIfk5eAYutl7/qNphFhs8A3foD3VV6xZAz8Df
3xXdr3ZYCD0DH7PcZbdatzB6Bn68tWCn2mFR9Az8V6Chk1q3GHrG7wWYuw5q
hyXQM+bn3VMCeQVV6Bn4Fv8sL15BHXoGXj88JpHPaUbPwO9vORvD57ShZ3yc
pxZP+ZxO9AxcpW/cAz6nBz0D/27SdovP6UPPwK+Q/Bw8A5/YYmLqcVAAPQM/
e/3ZYo8OQfQMvNxw5AKPg8LoGTi70sPIo0MEPQMP9a6e63FQDD0D75u2Ut+j
Qxw9A9/wLWaGx0FJ9Ax5r/P6g/lumbXoGXhF69A0t8wm9Axcx/iHdVJVK3oG
XuP/wCKpqgM9Y65ecsgsqaobPQO3mbzEOKmqFz0DVzoygkmq4qPnwfk5eAa+
xGvDyJJ9gugZ+N2p74eVtAqhZ+CChVpDSvaJoGfgm9wuy5S0iqJn4EljeyRK
9omjZ+CjMzaJlrRKoGfgR3enC5bsk0LPkPc2vk6Q73vbgJ6BR2vpCBwvbUHP
wJ1d+3rcS9vRM3DNlMxW99Iu9Ay8Qi64zr2Ui56Bh27cUeleykPPwB/lhzQa
7WGxwfPg/Bw8A3dU31VttEcIPQP/8PFrhVGzMHoGPs5lXqnRHlH0DPzksDu/
jJrF0DPwknjJH0Z7JNAzcMPN+wqMmiXRM/BgsZ+5Rnuk0TPkvbNlTt4zLGpG
z8Db1q8KMyxqQ8/AH99TCzQs6kTPwJ3aGi8ZFvWgZ+Aa7CQvw6I+9Ay8xMf3
lGFRP3oGnrXrSWKoswB6Bj6J5OfgGfj51+4xoc7C6Bl4lV1VdGiDCHoGvlDU
7Gmosxh6Bh7+6GVUaIM4egbebz76QaizJHoGbtNzOiK0QQo9A08Iq7sV6iyD
niHvPWwYsYhX0Iqegc/w3m/IK+hAz8AbCxfo8Qq60TPwh+MUpvIKetEz5tJ7
yibyCvjoGbifrdUlPofFBs/AG4Tf+vB3CKJnzPNJfg6egT9Y7XeWv0MEPQMX
7e48yeeIomfM+UNtj/N3iKNn4O8WpR3lcyTQM3C1Op1D/B1S6Bm4++Vr+/kc
afQMvEift5u/QxY9Q94b5/yx/E1OO3oGvj8+oOhNThd6Bj5FbFv+mxwuegZe
u2ZW1pscHnoGbr5K0N7WicUGz8Cfdm63s60RQM/AZW7mWts6CaFn4DtIfg6e
gafX3rKwdRJFz8AnXBJfbVsjhp6Bn9bbY2brJIGegZf9+mZqWyOJnoEzpxlj
Wydp9Az8ptb9BbY1MugZeG+2LGPrJIeeIe/tvsk54ZbZiZ6Bv+C8PuKW2YOe
gbvoe+1zy+xDz8C1zljtdMvsR8/A99UMnZ60VQA9A8++eGxKUpUgegauM6ti
UtJWYfQM3Jvk5+AZeM3J6HFJW8XQM3BjzVFjkqrE0TPwO19Ojk7aKomegQsc
rB2ZVCWFnoHbKa8enrRVBj0DT3wXNySpShY9A5edKS9WMl0ePWPO/EVGzSCt
Gz0DbxtVrGiQ1ouegT9xfCRvkMZHz8Bn/UwUVq1gscEz5uonxguo2guiZ+BN
E3x5KhVC6Bm4WVZ7j4q9CHoGHknyc/AMXHxUaquKvTh6Br7trXaTSoUEegae
su1KnYq9FHoGri7TW61SIY2egXu82FKpYi+LnoEXr/9UqlIhh57xewFWUOPF
59Qz5L2H+dMSe99y0TPwGctYMb1veegZeFem4zf3TSw2eAa+dl/2V/dSAfSM
ufpI/Rz3TULoGbhccuhn91Jh9AzceatohvsmUfQM/BPJz8EzcM3ognfumyTQ
M3BPK8Mk91JJ9Ay8gh8R775JGj0Dn39XOta9VAY9Aw9bduCF+yY59Ayc393w
zWiPPHoGPuWzeqHRtCG0P5O8N26KhXVCQh/tz4TvPzbOIiGhn/ZnwhUdjtwr
thFAz8APSpbdLi4WRM+Yqz8zCSu2Eab9mfCp654FFxeL0P5MuC9PMbDYRoz2
Z8I5JD/H/ky4ydLqS8U2krQ/E36veYVvcbEU7c+EC12P8Sq2kaH9mfDNhqqe
xcWytD8TXtqy4F3jFHnanwmX/eCa3NhIPQM3CoxMbHxCPUNe12N7qOdoDB89
A/+5dtwRwyIWGzxjHt7nfdDQWhA9A792u3WvYZEQesZc3WSDi6G1CHoGvqrp
3Q7DIlH0DPzJNS1HQ2tx9Dw4PwfPwLeXd9sZWkuhZ+Bp5zdtNCySRs/Ax01N
tzK0lkXPwE8WTF1rWCSHnoE3J2Y+CH1MPQNXvdx/L9SZ+oypN33tFpPAxIy4
1xXWkIc+Z/kIufPexjInn+dKsZuL8Xn7QjuRfTzzBTPhHl9uz5FK7MMOJCf3
2T9s1FtuLb7eORRsutT/9j7Typ6kIe/WhO/fUkhOO1lsjOKz4634PtnBTMVd
8pEfU9IwabQVQ/PGySTvyh2UH0aS+s/U2ac6JtCccAKpf3aeS4acG80D75P6
D/4yqLZWpbkf5Pw5K9/XPj1O873TpP5JKUvqhUqE0Oc8rf/Vf1Yvq3EdI4I+
bQ8nmc17nsXEfZu+J/T7T/SpYhL89FhMJjN/ztQFYQ00B/6leHjIm4QM5r7o
4uVNLjTvDam22N/39iMjk7/BkmluQJ8bY3ULDNI+MPGrZj/7GNeCPpXPyeq7
Z6Ywu/QXvtp9pB19/rCsC0zMeceoqa6IV5zbhT6DSK6lMCh/syL1f1A+t2Vi
DM3fRpD6DQQyXjgm0PytkNQfcGBFTIIyzd9ukvqbq7/GybnR/M2e1L/Uen2C
/S+af04i9d/98jsx1oDmb82k/v75Dm+lbtKccxpvp1pISiGz8bPdgS+baf4m
v3XDKoO0AuZ90MHjqhV/0HPTZ5OTv9LzGU3HC+ddHOrRc/ZM/Wi3zK/Mkhur
TEtam9Hz05DxFaO/5DHcE9Yrzr1oQ89+wsOGJebkMo8dt62ZeqATPbvsElxs
8zWH2bRir9W3mT3oeQXJtcwH5W86pH7BCWtP7Lei+Zs0qX9j0M9TH+No/lZP
6o+R3nRWWYnmbzmkfvkTVed2H6H52wtS/462Hd4pP2jOGUDq/7Ct2UdxLs3f
jpD61X4e9Nt5g+acuknd1288+c0UT773zGwdzd/kJ1Snz31ezCzgJsTf/M5B
z82+BT0/X/xi8iucyjsn0/wtpyNl0rGYIubcp/3VoQ2t6PmZTbS18uufzNzn
x+uNn3Sg50sfbvkkJPxgGq57tTS60O8Xduv4JVonfWduHb/aGTC1l3omuZb/
oPxtCql/XNK2lV/X0vxNhtTvplu/emIMzd8aSP2FEXstjo2g+RvUP21kl2W2
K83fXpL6vS+4rR/3jeac10n9VXyBjYf0af52lNTP7Dtnm3md5pxByQvOf15e
wdj41td/Xk7zN6+217dGfylnUjYIdo3+0oiej0zUfb1rZTkzfJjPiZiJNH9z
sn6Q+yanjPnIDThrW9OOnq381DjS5mXM0bJwb9GHXejZJCVA0OZrKaOT/sjv
yXYuep7dJaP82KKUKX0Se9VyEg89PyC5Vu2g/O06qX+h5WHVGWto/naO1B+S
wRtz7gXN3w6R+jsNTo8rGkrzt+2k/lXPxCdMPUDztw2k/shxFzVP59Occzmp
X+T6UO1vM2n+Zkjqt5MM0tG+RnPOUWO8UpctqGZ+N0zXWr6A5m+SFqzi4JQ/
zG2bCKUvm2n+1nPuUEfdoj/M2kVPVV3H0vytNqFRxiCtihHXjh+nWtGJnn80
bZ3gs6SKiR/yQTPtTg96zhhXbPQrvZJx7s7WcXHoQ89x6yzWTV5ayYwp+Tl9
xPh++v0aybUkBuVvI0n99o1eDf6raP4mTupP3CzX/OcZzd+6Sf0jCq62zh1C
8zcOqX+PyaiOi3tp/lZE6s9MCOsqz6U5Zxapf/zU8Vy96TR/SyL1e9yO7PP2
pzln8IlsVqZ+HTPt/pvoqmCav114aayk/JrDlPt+jPXdSPO3ozWJujvncphr
B/LezFKh+duO0bOWJiTUMibWxe+Ki7vR84ZVj7ZIGdYyvfNr0s6G9qLnpWfG
HbNOqmGeaLZl6tjx0fOcuBtXopga5pmYRw3Hj+ackf/I34JI/ac9g9+0mtH8
zYvUX9wzJtn4Cc3fjpD69Z3vvbshS/M3qP9yqXZqowvN3zaS+uvWPE9bkE1z
zhWkfuOPehkBU2n+xpD6b819k8nxoznn6LLhhkt1mpg930pW3Q2g+Zv0cN+1
N540MmOTOGvN1tH8rddE2IUzdeDzRETHhg5Fmr/VuR3znPu8gfG6wNp08zsX
PRc9aw31nt7AGOyT2ro4iIeeMyu3x/58Uc8cmiz1qnMyzd/iR5ZlT5pVz+SE
XYpd6ktzTu1/5G+jSP0Rqo8vmC+j+ZskqZ93efrFe1E0f+OS+teJxF3iStH8
rZ7U//yw4ZUVu2j+Vkzql6p/f+32Z5pzZpP6t9mZBHZOpvnbW1L/27ysG0t9
ac75ZcyTNw6XB/qCmFCTw2Wav6XF16ZLm7cM/H+UaZc2p/lbksX4gpcKLQP/
70b2vFSg+VtM46ayjV+bmYyEcfyNX/vQ85PzIQ3CV5sZt9tThESu9qPne2O/
9zyyaGaup44+YzmJ5m+hb4aKrh3ezDTr3/aM9KY5Z8E/8rcsUn9qTNKGaBOa
v30g9atMWmQj+pDmb4mk/kM3M+w2SND8DerPlV+55cl2mr89JfVrn8l3EPxE
c84HpH7PrvWOlpNo/naL1F+6o2R7pDfNOWVX527Q8Gkb+L0m+Gr40PxNtE7a
8fPyNuaOqq7/5+U0f+OfMdl/QKaNsRQxuH5AhuZvnapnPEZ/aWUk6o1DRn/h
o+fGuOQLqRdbGdvaB6u2fKQ55x/z3uu7VrYysRunrImZSPO33/V6EcPkWxn5
nBdrJc/TnHP4P/I3GVJ/5YocLQVjmr+JkPoN36+dvO0ezd94pP7rs4qmxIvS
/A3qb3mwSVfWkeZvTaT+ZaP/zNjykeacNaT+e3479WIm0vytlNTPEmqZLXme
5pwrTrZ3V3h2MNOcTLUrPWn+Zqw8TcRnSQdTscJims8Smr8Zvdo5ZKZ4BxMw
y27WTHGav+mtvK/yK72dGS87S8XFgeZvU2rLtc54tTPHT8arvU+lOeeE06p6
k5e2M9/ambEjxtP8TVVlw4J8yfaBej5o7DhLc861/8jfzEj9wtVl3XsX0vxt
ManfZoNj74c7NH8zJPXHZtXzlIRp/gb1D5m/j+XiQPO3qaT+nS+7BN+n0pxT
k9SfNtFdZMR4mr+NIfVfMhMQfrWA5m8Xnytev3Oyi9kTuCvjzkmav3kuW3Nn
2YIuZpzHoS/LFtD87XjVxadtgl1M3fR3tUcEaP7m6vEpITilk1l8z7g+azPN
31yURNMXnulkQpU+N6q/pznnthfz8+sWdTJdPqtbDo6l+ZutmXvpFZFOZhXr
W1vGKZpzXvtH/uZL6tfwaPuYy6b521lSv3vr4U/jw2n+5k7q/7aV//mIAM3f
oH7dH6ezszbT/G03qf/Ccok89fc053Qi9bfZLeHMHUJzoU2k/ltK3nUO76jn
L2VzZ9m7DfSFdD9Hezeav6Udc50vZdjD2D+9sUvKkOZvScOjzV7wuhmpzLy4
H3zqOeZpw3rrpG5mq5FVgo4dzd+emGptE/LoZpKeFyeeTKY5570Kh31RTDej
ON7+bYEazd9C3W8dX8PqHvi717zXOkFzzoJ/5G9ZpP5FiiLXdY1o/vaB1H/T
2zvobCjN3xJJ/V08uZAffOoZ6l+991qojh3N356S+qMqR4WfTKY55wNSv9Dk
nFyOH/V8i9T/rErh6zA2zYvkFGy/jj3Uy7R0R4uMO0TzNzFyvi6vyfZsVTDN
3/iLC+r2dXMZbfvKc3P6aM4J5xLPFm739t1I87fGI8uFU45wmd+mTT5lb2jO
+Wfoefmdc7nM7MQDfrNUaP72+3HK6KG9PcyladzLXu405xxB8i6pQfmbLKnf
4emIbZfn0fwNzgcmjg1xqgqm+RvUrxigvnNOH805of69EvedfTfS/K2J1L/N
aETcHluav9WQ+od2W72+IUt9BpK8iyN1ZO57bgaDfXsFycEemrdEhdE8xJfk
XR1FYZ9f2NA8BDy8vTpy5dDePnycMuDPg+NTk4bg40gTD5lLFzxIV1FADjnh
CocZd0N16HlIPG9ZtDZEcOA+nFuG/LBPZf7mYxH5eA4W+AS/O6tPDNzCeWbg
io+k10Xp0Ll44LoZh3kjJehcPPClfyrveFY24lwP8OcnNcdzS1pxTg240SXb
7mdmdC4eeGbo1UzHBDoXD9zq8adQVS06Fw+8zYb1escyOhcPfM7W4LHGgnQu
HrjHLj0f9dd0Lh74h/25HX276Vw8cKlju+y+TxBjg0/ICYuN30iO8i9Cn8DX
KqUfc4+h+xyAn2d/ijoaUYk+gd+20TOv8ahDn8BtDFf3RerQ+XfgnGXnsjcH
t6NP4Ic2JN4eKUHn34ELb287mO1K59+BXz6kZepZyUefwOVSpl5U1aLz7/h7
ffrU1VNCfQIPzt26uSCAzr8DL/vOynxmRuffgU8sDZ7pI0zn34G7VOuFOiZI
oOdmkqeVxCpv+MWUoWfgPrPsHIsHbsEz8O78c6ylyjXoGbhCa9u92M5G9Aw8
QOzZPYXaVvQMfOyIP0cyLDvRM/CnGqPNTqT2oGfgBjPMx+hPp/PvwCvHpPZ0
rqTz78C1Ne3s80Tp/DvwvVO5nx8n0j0DwGP1rul5HaDz78B5htNuOWjT+Xfg
CxdnSrDLqWfg3su37VcOkkTPuSQ3W7X8x5OomEr0DNzZ9qe828AteAa+ffvi
tUr+degZ+PyU7+4pei3oGfiXXNnVRyPa0TPwDaWLNHQVutEz8OrGo13VHr3o
GfgB3rNPoQ189AxcwLPtS6QOnX8HvsT34mzPSuoZuO9Vrdubg+meAeBfg1Ol
DM3p/DtwpTt2B0dK0Pl34HaR3N9tyXTPAPB7z6+ZZLtKoef1JB97WxogdEyn
Bj0Dv58yyUZm4BY8A//JE4ysEW9Cz8CP+uprarfSPQPARUOce8vsOtEzcP/I
O18Cs+ieAeBjXv8IXzmPh56BF1acm3vags6/A1epGxthK0Xn34HbtybKzH1P
9wwAf9hjdWj4EbpnAHgTq720eSqdfwc+S9xv6ec/1DPwY3KTXt6/SfcMAH8/
4oPKaQtp9PyJ5GC6By2slkbUoWfgI61qnv+9Bc/Ax5tu6h/o5ugZePS6gDz/
x3TPAHCjbZ/vmip3o2fgmQcEj7C86J4B4FanZy+P7aR7BoC3msTK6U+n8+/A
56wyP6JQSz0D91jXUN4QRvcMAP9ge355hiXdMwBcatu4mAgZOv8OfLVzktqJ
VLpnAPj1A+u9rI/RPQPAfx9rb9WbLoOe55K8K1xC4bGSMp3LhrxOnMy/g3+4
/nz9XdFHDH3+w/XdZI4e/i5wvc3Q5IcLe1uRR/5jjh6u56h3uHGd6Nx35D/m
6+F612naq54X9iCH658MmruH64WYzeOcFtE58ch/zOPD9en3lh2TW0/nxyP/
MacP18s++VPJkaNz5ZH/mN+H69e+OrkiLY3Om0f+Y64frg95Mzou3J3OoUf+
Y94fri9PiVV3n0nn0yP/sQcArtfMNL9gVUd55D/2A8D1LnkN7TNu03n2yH/s
DYDrX/44byu3ns65R/5jnwBczy0dl86Ro/PvkYP2DMDzFnLO+UHG2huF2/D5
CdxpuPqzv7fwPASedd+Nr7CPPt+Ab4iJzs0ooc8r4NWpNREnzOjzB3j8drk3
wTb0eQKctTdy/KFh9PkAfMnhxX7mmfTvDtzXo7Rb5xT9+wLP9zy2RWIO/TsC
H3VxxOfKJvr3Ar7p2vNZb+/RvwvweyHLw4JtqH/g9XeqxQ8No56Bz4g6tc88
Uw49Q555xP5uQUpyO3oGXm+xW1DGnO7NAC6yr+jBUR26ZwC4/4khbrrBvegZ
uJrfkpU14nTPAPDCL0aXV86jewaAjy78wZ3USj0D31J8wEH0Id0zADyyUu5L
mR3dMwC8uS5SP3EE3TMAXK9tcXhgFt3nANyNWyp54AzdMwD8vYDbgZXz6J4B
4OISir8ntVLPwDXFf4w7bSGPniG3fK4jfEL7WCd6Bq6h9uXR31vwDNzQYO6a
8poe9Az809I9E4IseegZ+KPJX/smbqF7BoC3znDZJqRE9wwAnz1PIud3Nt3n
APz4gog58Z50zwDwNFPmzjVDumcAuPTqn9J726ln4OZWB12XR9F9DsAD7eRL
J26hewaA/94WZSqkRPcMoB8X4xe/s+k+B+Ax8XtkbVKo51kkn6zt2jLpil43
ega+sXbyur+34Bn4QdEgnmlEL3oGLjg8O4el0I+egadfFswbeJeLnoHLBt2c
F9tJPQO3uDX7rv9jus8B+I37X2VdHOieAeDlT1wOmyrTPQPANWMkyjXy6D4H
4C6JEctYXnSfA/CXqcyrIobuGQDOzfypGttJPQO/VTt3UYYl3TMAfJGzeI/e
9CHo2ZnkkOrv3+VzW3rQM/CrLy4ILBq4Bc/AH+d03X9ux0PPwEObAgxfbqP7
HIBXdure91OhewaAT+J/lt+ZT/c5AN8j4nTU+ALd5wA8RlqoUn0B3TMAnD80
1IzXTT0DX6Q8J/b7U7rPAbj32PwxL7fRfQ7Ac7R2e/up0D0DwEfoSrbvyKf7
HIBPCcmbcucD9Qw8T+1WhXw49XyX5I3rfcZ4bHnci56Bf3bnRP29Bc/Aq25Y
misp96Nn4PEWaQpOi+g+B+CsjZvdFvZSz8CN7fuqVKPpPgfgPjuur+Q60X0O
wPP2Tn9doEb3DAAfdSRr7PNCus8B+KYTTj4+vnSfA/B754Q6HRfRfQ7A6y+G
2i3spZ6BK2WGOMitp3sGgL9ZsUPJfSbdM4A/N0//C0dOAT0Xk9zvsqWH1icn
urcBuF/0huPsnXRvA/CC1x3VymPpPgHgyu8ure76Tvc2AN+crp2Q50f3NgB/
kJ2m8cSY7m0A3lS4+aIXj/oEPut3X5fDS7q3Afixquub2Tvp3gbg7+qnZyqP
pfsEgIu1Z83s+k73NgC/7z5zZe1H6hP4UgFB4XV3qE/gjWey41KPK7DjC7RH
/Ir5gXngAU3mtqF5KdMldup5UUwFct/FUSZROtWM/PjGdab+HOT3tyg2jZRo
ZIap63gUxTQjL01+t3ThvlYmfKq9ub8GzS13felS4ZZ0MAkkrwbuSc43mliL
fI5xpvmkJO/zMr9hLDbn5c3smAYW5oqrhJ1e7cgUYE97M3uOfwTNJwOkhNSM
TwmxXVO+3na2pvnkL4XQ8+pzRNhvPrlImyrQfHLsqDmtfU2ibKE8CVeNDDHk
29Xzrb/fE2evOfOyz7moHPM9a8vgGumMWmZX+Jg7RTG1yONfn15iaN7MLLRL
i9AwbUa+JP31qPbkNibHue9QUUwb8q+FTQ2ROl3MIZLPAzck5w8FLHZsKYph
Yb53RtxBZeE+QfaS//zQ/DBDrt9TVUuYfXHLrVn+GjQ/lFO80dxTIsL+un1e
mHORCHJL1VkbCgIG3g+Q/QDAQ8bnpDwzk2A/h3NuJO/SIucJP6msaXQuqkGu
/v6YYmNYC1MxN/lqUUwT8ic5zzkRMh0MP+raTQ3TNuRzS6oTrY8N/L8n3ztg
LkfO+9lxc22L9Ghexxva29iZPdAvBJzTYxqEaC6nHGCV5ynKrhMXn+4fIYLc
a6zu+8eG4mxd+TvBztY0r8vW+qzt1S7Bnki+l4F86Tw5p8eObSlxLmpEPuzH
w/i11p2MDmdKinNRK/Lw6hJf6YweBr4fyR10Xu7NrTnWRTFCyF3V/N9G6oix
BR/kp8Y4iyB/M0FnkmelONuU7LsALjQl/crmYEl2KPmeCHMbcp7NWjO9Jsa5
Fbl48zebxBG9jNKS8HVFeiKY5zRP0vK3vSDB3rTC4F1MA81/9Kan9s5ZIMX2
Jt83QS7hQs5rHWoQtyiKoTnGdr239gq1UuyAf+QS/F//b55wjeQJgYNyA3WS
Gzz/Rz5QNSgHmEdygH2DPu9XkM/7PoM+p+8hn9OVBn0ejx30eRw4b9DnbuAL
B32+Bu416HM08OxBn5eBjyCfi1+Svgqf43qqhmtsFO5k2klfBX6ufVmXwr4e
Rob0VeDDhE59yijpY4aSvgo8R/zXircTWOxbpK8CHyF/KC64WID0B/q5lTPe
pENHUIxdS/on8Gk6FbYSr8XZU0n/BO4683h65W5J9kHSP4G/mac0/e0EaXYC
6Z/ABRe+DA4ulmELkv4J3HTpSpFDV+XYq0j/hM9ZDX0LP6Ykc5ntpH8CPyp1
9MZRHT4zn/RP4EIy32MCs1jsL6R/Ajcdtn/MgTOC2CeBO+iWpJXZSWCfBP5w
9tFpiSOk2L6kTwJvYobfCMySxj4JfNaSZ0IHzshinwRudP9uzH0VeXYa6Yfw
uaZ06L4d2sf6mRLSD4HrDclX3XtAgN1H+iFwt5G7zy/XFmLbkr4H/JeBa+C1
RCl2BOl7wMcuGiK494AMm0P6HnCnZY92LteWw74H3OrhHc7QvfJsA9Lf4HPB
9uE5nqbKgmxt0t+APx29s1kjT4idQPoY8LUmMjtMlWXZAqSPAQ9Z+eCrRp4c
7vkBvjcqXPVEqjx7PelX8D65fIyjFe+wMHsk6VfAq7Xybh43kGfbkX4F/MLj
MPN6xSFsV9KX4H1gxNObnlY7h7A1+SN6U52D8X3CmEKxvk6Td7gnB7j5KbGM
F8Xi7Fje/66H9z/5Es+mfXLi4vtz4MImppb/3ZLnM/Cj+bME19krsKcYBY03
9e/Cn9vzS6flmVkPc0pzb/JS/1R8HV8921PfXuM7Y+M2fZm/RhfyTVXj320O
5jIcbydVU38u8oY266sjJfhMt9K8+isa7/B1s379tkMTrIuZKR87Fow3LUQu
t1StnOVVxVyIz9xTFNOJ/GODymWF2l5mZIbAIn8NLvI1fWscMiz7mbvf9BVN
/XnI94p8UGZvEWB/I3uW4PUo1fBOUbtJGVObvOGHqX8+8uINcqe2aNQwsu5K
V/w1ypB3HjqmmdPfyMR3OwRomHYin9I5fHOKHo9ZIha8vSimB7mt4IRRhuYs
dv5//ZmHPELi3emREoLsaf5C5zVMWfj6WCe/saEtWYj9tufmheX+L/F18PKK
K8csKyuY23HJu12K8pBH7uxXT03mMDt6lv3WMC1FviV1VmVgVjNzZkTcGX+N
auRNeTtjV85rZ2r0+AnORR3Ir/JldA+c4TMHF8/00zDtoT9XdOyp4T0stuB/
/acP+TeZxLrmpwPv03RzRpkqsPD1V3W41drP24TZvrN3ntHIoN/v2I9uS7qv
Qs+B4/c+5By4FdkHBa/Lm+xOK8d5/GFsnmuIXtHIRX7YrendeOsG5nJdn7lL
0W/knz7rvDRVbmXK/TnZGqZ/kFsW2Z9jeXUwvU8tXf01GpCX1wZtiO3sZhQP
Xi+Lce5A3icqKjA+r5+JOJ310rmIfv+SKqnKaQgTYOv+9/fqQy6l8HpNhqUQ
O+m/ftKPfLWSRWKEjAj7f89D+v3L9TFNE06kDryv+513QsNUCHnxRO9L1scG
3teRcybAx5Fz2qqkD0Berb1nf4KSci2jaTF0zu6iL8gX+ZZsPtfZxCyp3Fzr
r1GMfGrB+DNcpzbGUE5FOda5CvmbCut1zws7GcvJXu80TOuRm7RenuS0iMvE
RXBnmPrT7zXyWek81Wges5ic2wH+nJzHznu37WeMM/2eokt2lHmasSDbNifk
sXMR/T7CaMSrhHCeEPHQj/ysyqrx7i8H3me6Ckc6W9PvFzI16i5a7Rx4n3k8
bKipghDyIZM9u2eMlWCbnJ3rrpFBvy9YN0N9i9wPSfZFch4G+E1y7loI5gjI
67gzOXetQ/oecBtFhbGHrg58ziJ9D14f80u+jbGsbGOcybkp4JvI+WFr0g+B
X1KW9V45T5hdQ/oh8G9jH7ZNahVh15J+CK9rc2uym0WndzATST8E/rFTJDUx
rJt5RD6/AF9Dzs16kz4JPEVNsnViuTBbkfRJ4JIT71oLBYmy75A+CXzVFPaH
3yvF2a9Jn4TXu/Dmj29jPTqZMtIngev08664NPQwkqRPAo+Xmek43prHjCOf
R4BrkPOlcaR/Au8cJ7qB5SXCXkz6J3BD7fCUIkaMnUf6J/Az0w10YjsH3teR
/gn805xvAf6P4dwdzSHlybnQMNJX4fVXrCf5klNWF3OD9FXMCcU67dXm9TLb
SF8FPmbEZP3CB3zmBOmrwNcp6J41lhJgB5LPNcBvkvOcf0i/Ba6lKfj++1RR
9n7SbzEnnHpT++UfMTaL9FvgsXqzr/ndlGAbk34LnGf4lb/DQortQ/ot8IWL
XZyMpWTYeaTfAj9PzmfKkH4L7zecBeI2KSn3MBak3wLnyjXOyDnfx3iSfgvc
U1VD7FxnP/OL9Fvg3iN0GlSjBdidpN8Cz1FJt+Q6CbHPkc9lwEeQ85bDSB8G
vnEyX+t5oSj7NunDwO/MCLri4wt/9z7knLkzeY6LJMn7un7k0xZkb1vYO/A+
k/Rh4K6mO3JUowfeZ5I+jLncKpG5XCc59lTSh4ELkHOVSqTfwvulTSP/CJ0s
5DFs0m+Buw69WKd8m8WeS/ot8MRRWmu7rATZa0i/BS40NjUpT06YHUP6LeZa
WnaaT9JE2AtIv8Xcj5yTzCH9Fnih/rVeh5kSbBvSb4GrMNO2susk2bWk3wK3
N878onx74PMO6bfAH5ptm91lNfB+mPRb4IcjWatrxeTZS0i/xVxxyheRdRXy
2G/hfWM7Od+oSvot5n7kfKMvuR79kPONcB4VHifctOJnWMNvPPcLfImRfEm2
K927CDzx25OcbFe6XxF4UNyEMscEukcRuIVI5w/HBLovEbic+Yc8x4ROnEME
fnbQnDLw+bNnJDom0Dll4McXCBS9sKFzypjX1Th9e1FM55SBz/XL+frChs7V
Ag+cNTvnRTHdKwi8k3gGP/B+OzYva0ZYA51HBj5l167xYQ10zyTwvFNnL2S7
0n2AwH2zLc5ku9J9gMBNRmu4Z7t2owfgg+eLgd+4P+2Z4zw6Xwy82yzwkWMC
nS/GHK+9/4HjPDr3CvzlDce7jgn0PC1whfnZ4Y7zxNFD8z/mhYGvZA031J9O
9/UBlzSrnKU/ne7rA/4h6MUU/el0Xx/wE39OTdSfzsW/O/DBc77Ah734eFI5
iM75At+3fupxZSU6fwo8pz/gqHIQnfMFPuUe31VZSQLPY+f+Yz4X+ALFhaWh
DXQ+FzjPXuFHaAOdzwUe96wsN7Sh9595INQP/GKS7ZrsTlo/8HqHtJXZrnR+
FvhSqSnLszsl8Nz4+n/Mt+K5ryl7T4s+pPOtwFuOst1EH/IY+LmYH37q0Dht
QedJgW/bY6N+Ol8Sz6UPzgnh8YFrLQ6b4OLQj+exgZ8q8OnUi6bzkpCPDd5X
Brx10L4y4I8G7SsDPnhfGfDB+8qA/x60r2zuoHlJ4HA97DHDPQz/2FcGfPC+
MswVB+0rAz54XxnwwfvKgA/eVwYc9pWBT3h/PknjqendADoXCbxqz/EFdwPo
XCTwW4lm8+4G0L1kwK0lVWbeDaB7yYBf0HYNMM+k3oDX5Bb7my+j89HABT4M
O2+eSeccgdvtdDtjvozOOWLeOKTyhHkmnXPE8zZxy9zNl9H5O+BHbF8cMc+k
c47AC4WVXc2XyWLfw3nAecX10uZ0bhH493OPqqTN6d4w4Es5hrtFteg8HfB7
l+7uFH1I5xaBC+vLOIlq0Xlw4MdyotaLatF5Q/y5rkMtRR/SeUM896JyzFxU
i87BAb+aUr5C9CGdNwTeun3pMlEtOex78PlF3lzq0gEZuqcL+LaVzoviRen8
GvD3HfnseE86Jwh8TIiBYbwo3RsAvL1ogXa8J53jw/MkpyInxovS+TLgzzQV
NOI96Rwf8PPVBvI2QvLY9+BzyqmXIUoulbRO4L83CI9wcaBzdsANBHYpuFTS
1xE8d1H9o8+5ktYD/LPv/B5nBzrvBnz4jXyu3j55/LnweYGbPKNOfQGdOwNu
tS24Wv09fV0GfuDI7Gp5dTp/BPzO8l1V8mXy+DjwvvpA5qc3Bf/XXAxw3X6h
HM7KITgHBO9zPpG5D+i38LofyKiHGxX9wLl74IJkrgH6G/CkV+9dsl35+Dh4
Pn/mirsuDqXYt4FHZ9UHuDj8wccHPo+c54fHB96bfMlHWYnuAwFuta37vHKQ
AL5ewOvg43QprmFRBf5c4GO3RNYZFtVifwMe2GtSbFjUhPUA30/OvUM9wBXH
v92c3UnrwXPymRNts13p3gzgeXv9NmR3CmGdeK7bJmOFjHk11gn8SqcjW8a8
AesELmIiFCT6sAX7D/Dkq3mXRR+2Y/3AC8h5cqgf+AzvJr3T+XTvB+aT09bN
OG1B+w/wxsKkqafz6f9f4MvdJ0w+bfH/55CwjwJ+X3h9v9jieedXOgd/X3zd
/+C/1MWhGX9f4IYKWxa6OLTh7wu821bXwMWB7pfAc+NRrFkuDnTPzODz3uAB
+MomVWn9aPq6A/zxNU9x/el0XwRwSYNGYf1oupcDuFP5WgH96XRfBPCP5xN5
etF0XwRwDZJDgh94X8E/u6g7imlEP8Dj/VraC9Ra0Q/wg7/eNhSodaAf4NO0
Lv0pUKN7IYDXHbQrKVCjeyGA33s/5XuBGt0nPPhcNHgDvtNiRRnHj+7ZAJ7B
fVXMkaPvZ4BPDFf5yfGjezYwn1xytpAjR9/PAK9oqM/j+NH9D8DnX7XI5sjR
9zPAwwbtf4DX8d0kh4TfC7gxOccL18Pr4P1wo15pc7rHAM+jkhwSHmfwOVXw
A/zt6V+bRLVE8fHhdapk5827B2To/D7wG3G7Qg/I0Pl94GtJDgk/d/C5Tfi5
+D1gjZRevCidrwc+x2//9HhPur8IXqcU9fpW/krvovvNCM87lWnyK52L9QD3
zb4x/1c6D59vg3NIqHPwuUeoE3i32Twpl0paJ35v2H5bzMWBzqcDf3FDUtil
ku4BGJxDwu8Fr48rWdbchWd68PcCLmk2qW3hmT78vYB/COqpW3imH38v4Oz9
Dq3qC+hcOZ5jJDkk/L6Dzx/C7wt82Isdperv6Tw+8L3r836pL6Bz4sCz++f8
UH9P5/GBT74XXqC+gM6J43lFkkOCB3jdP/fpdUQU04segC9Q9LoZxfDRA3C+
7uTMgjA694354fcrHwvU6Nw3njM83ptSEEbnvgfnkOBn8LlB8IO54sgbrwrC
6Bw9cN8kgegCNTrfDbzOYfuTgjA63w3cRCo3skCNznfjOcPns+8XhNH5buCC
JIeUH5SnJZM8Dbzh97ll1UuG9tJ5eeCjrlvf8nKnc9yY7xmmhHjxqDfMFSsm
BXm50zlu4DO8/a958ei8PPDBc9x4Ho+cGwSfwJe5Z3h7udN5ecwhx+me8+JR
n8BFPwWe9nKnc9zAHfawTnjxqE/gW6RmJqUa0TlurPO345tUPn2/ij5JDvl/
AE3lAyc=
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJwtmXfgVuMbxt/3PM+RkaShXVqSlHZaokkplFkphNBCQyqSdmlJ1i8VsrMp
q4UyokjRlJJIwygk4fe5XOePp/vzPZ33Pec953nu+7qvp+I1Azr3T3K53D38
E4gvE08kbszncsfB9eHT4RPhxnBduDB8JlwHLg23gpvCpeCWcBO4JHwO3Bi+
EJ4I3wVfDk+HJ8BF4aZwffgq+CF4OnwRPAkeBfeEH4SnwUXgJnA9+Fi4HlwD
rgifB7eEd+s8+B/GD3n/liOMH3U9Yo64l1EcjMRdjOPhosQr+J4Z8ET4J+J3
jJ2MYzhel3gax+vAV8Cd4aPhOnB1uBLcHm4FnwpfBJ8HV4c7w+3hPYxicEI8
j+Oj4Nvhq+GH4RnwDfA8+EG4NzwXfgC+EX4UfgjWC3sKngMPgJ+G58I3w8/A
8+Ch8Evw0/AQ+AX4SfgOeCH8PHwb/CL8FHw7/DL8DHwL/Cz8aN7zYgX8DjwF
XgkvhqfCH8BL4DvhRfAL8Ej4DfhFeBT8luYUPBZeDL8Oj4OXwAvhc+Bh8C3w
XfCb8EvwBHgZ/AY8Df4QXgqPh5fCi+AZ8MfwcngivBx+E54OfwQvg79jFIRP
JO7UnIZPIH6rOQQfT+zD+TO1BuD28K1wH7gDPBDuC/eDZ8FT4cnwq/ACeBL8
CvwcfC/8NvwqPAh+BJ4Fnw8PgvvBA+HZ8H2a89HP9m4W3sMcfxd+m+Md4cFw
f7gTPAQekM2ZW+Cb4C7wCHgQ3BkeDg+EL4bvgAfDveB74DHwtfAUeCx8K/w/
eCbcCu4LXwu3hPvAveAL4Nvgm+HWcD/4OrgdfDN8A9wG7g9fD7eFB8C94dHw
Ang+PAx+DP4ffDf8HPw4vF3rR2uLuINxDHwc8WflDrggMc/51eFK8C/KL3Ch
vBYQa4xQEf6acRQciFsZqZY4cQuDx5v7l7ENLkBMiZvzznN/M/bBJxELEDfl
//va3F+M2sANxKt0DD4NrqzPwTXgKvCfWvNwaeJvjHLwScRDykdwKeJwzn8c
ng2PgOfDj+i+4NPhqvBfjCpwWeIBRhm4CPFMzrkavgL+lVEaLkw8wqgKlyMe
ZJSFixEPMyrDZZS7GNXgCnnnQN1PSeIZfGdvuCf8Nw+nOX9XIh6VOi/X0AOD
z4arwv8wzoIrE/9ltICrEAukzsunw98xKsDHEgulzkf14HzqtX0KfHzqnFUX
PiF1nqoPF06daxrAMXXerw6H1DXjVHhidO15lZd2Y/RcuR++IXoOzYJvil7P
D8B9o9f8Q3Cf6DX/IFwwdW6to++DB8MN4b2M01TziBOia9srnP8n3BguT0w5
/zLNA/hY+Hr4DDiBz4WrwUenrmE14WNS5/Ra8HGp83ht+ACjLlySWCR1Xm4E
H2TUg0sRf2c0gMsQf2PUh0sT/2A0hMsSi6bO3Wfqc/A8+DL9Dvh++AJdB54L
XwqfAc+Gu8C14Ufgi+E68Bz4ErhfdC18mN/+a/QaKEH8JXrenETcx6gBFyHu
Z5wOFyUeZjSBKxCPMJrBFYl/MZrCJxMPMRrB5Yh7GNXgwsTvGZXhgsSfGbXg
4sQfGafAJxB/YtSEixF/YFSBjyfuZlSFCxGvIU5m+o7mN1wfnRfu47dcG50L
7g3+vp6cc2ne17ke7pH3d18HX5n3b7oW7p73b+0Fd8v7fq+CL4NLwBfC7ZQ/
9LzhtnnfSw/4EuUh+Cy4gfIT3AJuqDwEnw03yvt3XAlfnPcz6A53US7RO4E7
wj2jc8sSjv3Cb1gLTyN+z/+dDJcg/q61DZ9C/INRG65GPJ7PtIGbw/v4TGH4
FY79y9+N4DOUPzQX4PPhfxgN4VrE8po7cKe81/dl8AW6Jnw5fCFcDO4It4aL
w53gNnAhuC18FjwyOl8/y/Xvis7pz8F3R+fT5+HR0TnxBXhMtK56ER4XrfNe
hkdF5+IF8C3RWmoOPCBa882Gb43WdnPhXtG5fgZ8c7T+ewS+JjrXT4evi64Z
M+Gx0TrvJXh4dH5/Ci7DGhmjd8ax26Nz/RMcr8bxmRw/XzmN2I6f2ULPHz5X
tYzjd0Tn92c4f1h0bXgSHhqdu+fDg6Nr26PwbdE14HF4UHQtnAcPia4Bj8Ej
onP907p/rjWVa43j75vge+HJeWtF6dhJea/79fAnqq3E7xm7cl73XxFX5631
pZMPMx7g+BriB8qb8Gfwh8qn8OfwR/DUYL46Opd8CX/K8fHBeuzy6NyzAV6T
d37aCH+mWkbcz/iW8azWLrE4x/fkrLmlt79MXL8OKw8Tf2FsZ/yW8T7pCc5Z
R1ylupl9dk/23T8ydmSs6+Wzz+izPzD+yM4/gbE35+eyK7un/dlnD2XHv2D8
nh3X9zzOdTfruN4B/A28QXMF3gZ/lfd1dN+7Gd8oXxCPzp7/oewdLE38zFWf
f8ruSf2G1qmur3fSO1q7/MqxZYnX7wF4e+LeSmtE+eE5/u6vGpi4F9N6aceY
kHON3pG4L9Pc3s8or+cX/Jt+z57X6sT55I/g+zmQPR/d88HsOcznnC3EdZrH
8Nd6V1oP8FZ4vXQFowFcM3sOv2Xvbj9/n0IsT1yfmP/kWisTP5/f4Duj9c0h
eGC0PjsIr1Ft0b3CKxLrH63xg9n97c3e7e7s/W5LnAP/1m/J8m0qDZPlbdWd
rYlz5hE9hyw/R9UN1W34L2kGuDXcjPvYm+XzIF2U5XzVpn1wc6U4eHx0z/wP
n92Z+Dn8C/+d5cZCmda4Bu7Kdyb8X5ec6+kR5ZKc62CZxMc76PdnOfxo5Z4s
rx4jnZDlHOmu7xLnbQneqdE9+VHKPVl+Vq28N7oXlc45kP2uAsq7wbVGtfWo
4DyvWh+C64Lq+67E9SIvLRRcF1SjCwTXAumE0sG1UrW+bHANlQYoGfx7pQ2O
Da5x0jmFgmuftE1BuFvOuqh8cC2WLq0SrMOlRV9KrM+f4Z/q0nw5a8sXszX4
ArFSsL6VRj05uL5Lu/4Mv681rxoYXKOlr4oE6wFpqkbBfaj0Z4vg3lx+wBnB
PZd6r1mMT+EV0uccvz1njVosWBtI25ylOpezln6VcWli3fhwtKaXnpSWnMY5
4/PWmPr+G5VPovsr6UnpSn3PUGmS1Ln4ItWKxN7CQq6zO7HvIW08JThX9+Cc
yfBquLvuIbEfonr3ZuLeSpp5eeK+QPnn3cS9jGroW4n7LGnstxP3HdLVryf2
LqSj3kncp0hXS5dIn0g3Lk7cj0h7v5bYb1H9XZS4z5IeW5jYe1HNPTfY55FO
viC4Zql2SZs/Dz+Rt9aeo/uB34muedLe9wTXqSvhy4P9E/URlwT7RepBBgf7
EufqmQf7S+o7BgZ7IO30fuAHcu5NBul3wm3hScHvuhs8JNjTOA8eEexdSGN3
517GwHdwb1fCY+E7pTvhT+D34dHBnon0trS53stKjo8J9k+kvbty/G54eN5z
TnNvGNwXvg+eAneDR8Mj4B7wOHgkfAl8Jzwk77k2Er4N7hTss6nfGRvsn6gX
eIxzNsFrOWdVtGchDTMx+J67wsODvZpO0jDBfsuF8DC9e7gjPC7YY1HfcVuw
b9M+WhOtgt/L29eQv6G+Y2iwF9QBnhB8zhXwncE+j+b2yGAPpzP8Q6aj1It1
DF4v6qG6B88H9U1lgr2ad4m/JvbZFsFfJPYGpZHKBXs47xFLZWtZa65EsI+x
nHhcsO/xDrFCsFfzPnFdYv9T+q14sL+xjHhisB+yhFg02ANZSlyb2CeUbtyQ
2COV7v08sU8o7bc5secp3bspsZ8pTbsFbpazBv4xsZf4GrwH7gC/DlcM9oVW
6F0l9hCkIT9O7FFIH36Y2BuRbvwUrpmzXt2Y2L+V9l6V2MeQzvwoscci/Vk5
2GtaSawZPK8+IdYKnlefEt9L7DNIS/cP9hhb8y56B3uPZ8E9gj3MxnDPYN+y
CXxDsK/YAh4Q7De2idbXmlevaR0Fe57qbfsF+5Ot4L7BHmZL+MNoj0mavE9w
rjgHfi/ad1Nffx3Hn+R4U/jaYL+0mepvsFf2EbEaYyj8IbFGsJ/2MbFqsPf1
AfH0YD9tlepJsNfaXJo/2DdbTPwzsSf8Btw22Ov+zweAb4TfJr6f2OdRz3IY
7gq/CeeDfZ639MxT62zN/9rBeUB1pz7HH02sqxdF55rNyknRuWAL/GV0zynd
8lV0zyltszLae/pBeS7aW9BcXZjlr03Ki9G9udbCg9E+g+b5/dH+g+b5uuj+
UJrtg2gvbzd8UbC/943WouYHvIfYJdjv2kFcH91zSs+fH+yLbiO2D/YhtxI7
BPuiX2uNBnuhPxI7B3to2zVXo/1WHX8k2lvQup4V7Z/oXbwU7Y2u17yL9qz0
HudFe1ma23OjvS+toxej/dN1mkfRfutazbVoD/QLzdNoX/VLraloTS9NPjva
91D+mRHt++s9Tovek9B8mBK9L6K8NDN6/0Dz4b5oL0g558Jsjaj23RO9d6L6
PifaS1Eumhy9X6I8MD16v0Hzp05w7VhNvCnYf9Z76cV4Lef33jXYd91JPDu4
zqrObIv2L6R7zwnuHzcQv47u56V1mwZ7yHqe30R7H9LSb0X7y3pfO6J9BOnJ
zdH9v7To29G+s951y2CPfSNxa7R3IM28PNqP1r0tifbi9a6XRtc/zZ9mwd61
nv+yaC/+W7hVcH3UHH4z2gPSXNoS3ZNLr7YO9u21XuoH1+jPifWCa/dnxLrB
tXUN8ZNoL36v1my0f70LvpjxRM7XlW+/gOO1WJcron3e7zneLdj3/o74cfQ+
gdbCNcH7BTrn6uD9An3nqGA/R9daHe3pqL9rEuxlaU5uiPaM1MtsivZ01FO8
G72XoGutjfZ91Lu10brNOSc0CNYJms+fRfvC6rMaMsbnPLc/j/aP1FstjvYR
tJa/iO7l1Is1D/YZvtKcyvSK5sma6L5OPdrJqfdglM+rpt6DkR44JfU+jer+
pOg9PNW1Cqn3eFQ7Ho/ee1BOLpd6f0h5vnzq/R7l/9ejNZDmzzPR+zSa87ui
PSn5LVVS7xVJpz0VvSehmvVk9F6Fapl8A/X6en9PRO9tKLfPj94LUf7fHt2D
qYeqmHoPTJqwcup9L+nJSqn3w6QhH4v2zFVHnove79G82hjdQ6ofLJF6n0w1
6KTU+3CqTU1T+wjS7U1S+wjStI1T99jS8M3g5xP7LY1S9+HSaTqmfle9z85o
z069YcPUPoX0lTyWnTl7BGem7tWlaZ+N3t/SnK+R2veRxiuWeu9QtfvU1FpW
eq946j1C1fEF0XtUWkclU+/5qSaWTr3np/peKvV+nvTAt9GepnpY+Ro7clkf
l7qnks58JVrLao6VTb1fqJr+f3QiyFU=
"]], Polygon3DBox[CompressedData["
1:eJwtmgn8V0Mbxe+duSkhlTbtm5RSUt4SobKlLBWKlGTLkiJL2YqS0kJp0YIW
0R6Fyp5WsmYNKUKyLy9eW97zdebzMX5zZu7v/u/vzsx5znOe6vQd0PWqkGXZ
AP2v0Gc9/e8SfZ6fZ9ke9eurXSrcR/gf9SuonSV8mvD36k9Ru0j9KzW2f8yy
/YRPVf8EjX1JX2MPCF+i+5cukWVlNHaa8Ima363+/mqnC58k/JX6d+n6j4Qf
0vWtdH1FjZ0tfLrmf1D/PM0vEb5O8+U031BjQ4Sv1nwUrit8sXBv4b/VP1nX
T+P5dX0pzVfSWHfhMzT/o/o11PoI9xD+n/qN1YYJDxHeS9cfKjxa+Lbc368s
3EO4i/BP6jdRGyU8TLik5qsJ9xY+W/hX9auq9RI+S/gX9fdV6yx8vPAu9VtF
3/+M4Oe/WGNBcxU09oTGDuQ3q3+mxv6rfhW1nsLdhH9Wv5HajcLXCBf6/mHC
dwuPEt5HuLrw+cLdhX9Tv4Ha5cJ9hXPNn6O/v5D3p79VVvggzfcTvkDzmfBZ
mn9EXTbJfsLdheen/VJGuIfwAuGBwvsLdxSezveF9xZuypoK354bNxe+R3i0
8L7CR0bPdwl+/iHCTwtPFN6sa08Uvo/9GPx+jxa+lfcpvFzzd6gdqXu109gn
GhsqfJhwK+H3hI8UnqX+NN6pvt9GeLbwdOGKwqOF26l/ssa+1PXHFn4fczRW
VfN3CbdXv6PGdmv+iMK/b2Lu93VM4d8/W/hA4THCHdQ/RWNf6fq2hd/XLI1V
0XzLwvtxQu73NUr4OPVP0tguXd9eeKn6j2ishubbFd7vDwtXF25V+DxNFS4v
3Fr4QeH7hA8QHqv38zHX89uFWxR+f/fkXq/3Nd5IONfnMM2N0/Xb+XvCbTTf
QWPLhOfr+pq878Lr/6BwZeGtuu4Q4aDP2wq3wzV3ZOa5hrrfFeq3V38uz6bW
X/PXaqyW5v5Ua6p+A429q7m/hJsJHyz8nvDtai3Ub6OxD/hb0dzSQf2HOJ/C
/Tk/wvOEj1J7WPgBfaeSnm+4cEv1j9LYh7rmD11/sPq1NfaO5urAV8K9hP9S
v7bahcLnCf+pfi21vsI9hf9greA/9QdorKLu9ataLfUra+xNzY1Ua6N+e419
yjtXu0y4n9oMzf2m62trrorwFuEz1J4XXiXcWM87Qri1+sdpbIe+e5rws+o/
qbFGmn9ReK76izR2ru51kvCT6i/VWF34KfrZTtR3HynSmdDcuMxn5THhEcJj
hY8S/lmtrPp/qL2muUfVhmt+jHCb6D3RXLh15r3SRGNXwefqP8x5VHtCeImu
qaO/f7LwSuFlwvWEPxVuq/4JGvuvvnOA8Jnqn6qx79T/XfdrwF4Qflu4vFo3
4c7C38JdhbkVjv2fvt9ReJX6j2qsvu7/t75/mHBD4ffhErWu6p+jsd95f9Hn
4dJg/uuk+aeEl+uaBsIz4T/1r9bYgbp2LDFC+AzhH/SdbsLr1X9WY81KeA2n
q9UsvLZd9blG809p/lDOu+6xTXie5loLj9N8R8110diPGjtV+Bm4XGMNNd9F
+AXh1cJNhH/R9ysLlxZ+g7OtdqX6gzRWQ3OnR/NXv2C+PEHzjwkv1DW1he8X
vkL9azRWTdcez5qqv0BjtTRftvBv4zd+XZgTG2YcYHNlU12zWP0vNPS9vn+K
xlar/5iuP0hzhwtPFb47N/9PKBwriZkZzyf8nLorNXaI5hfoXp/CfawZfBrN
9z2C4+m7+vyP8J60/u/AqcJ/C78l/JJwVeGfhK8XfkXtZc4aMTb6DHOWGyZ+
5x7sJc449/45eD9V0+cnfFef1YR/1jU3pN9PbPgn8cFG4SqsPRwl/FGKH60T
H38o3CzFky+EX2RP8/s0NjB9n7/9fVq/TcRs1l74usIcda36N2fmrjeC9+9v
iQ9eC+a/XxOffMCa5H5Hn2vuZeGnhV8Uvjr6DF4nfEvms8kZ4azUZg01Vyo6
fh8WrE+WFY69xFhi7S/B+q2GPnfCT8F6qJY+PxfeE6xfDgrWZ78G66+a+vxM
+O9gPVM/WN/9GaxP6gXrGc485716MBcQA9AmaBRiAxw+SPimzNw+R3gga8Pf
FP5GbUvmNWft+Q7fbResV14qfPY4gwM11zFYqw0TbhbNgdfn1ghw4z/B+qdB
sL5cp8+Kwt9wZgpzCFzSPPHvNuEjhI/hGuGPhf8jfKzwd8ExiljFGm4XXoWu
VP8TOJ+zzjll7YSvZO3gIeHPhK+A29FR7CXh/sJvCdcX/pM1hds5J8IfC18i
vEW4HnzNHhJ+POn0j4QvKqwR9Vqybbm142Ph36OdfSDcV3hF+PeYZh8KX1h4
/9WBW1kT3iW6XHin8OWF9yCxjZjF3nxTrS7cypoVjtnEbvbsNs2tRucR+zR2
meaO1x8bKdybd1P4naH3K6Z3+X2w3q+kz+2FORd+qqzPHYXfOflDhbQWr+iz
hvAvuv8Q4c3C1YktwoMLnyFiK7+J38aZRUvtH3yWOUPEov2CzxZrTKwtGbz2
PEOrFH95ts/Ujld/X31uLfxMxOd2KT5wxuFqOIOzDyecqH6ZxBUd9PvvEO4l
vLLwHmHv7JX2Du+MvVUi+F0eE63Xu7OOJcypcOvBwXxdMjr/ahacr7DfiBc7
9AyvCg/W/EvC9wTzNXumyL3H2UsjNP+u+vfDO5ofKfy+8IPChws/H7zWu3Lr
gTs0/57wAxpvrvmlnHPh3WrL1L9e8xvVHx8c7/tEx6MhwXq6m/Bk4f7CL8BV
whuExwXrlYui9cstwXrt0uj4PjRYH18SrSduDdabdwpvFZ4l3EK4X3R8Ghas
ty+Lju+3Bev1K6Lj7Qh4H30t/IHwHOIMel/4Q+G5xCHh86Pj5eDg/IAYA9dO
D+afW4VfF54arNe2wNNqs4Pv2Star18frMcvKByr4K+jhXtH6+kbgvX5UGKA
8H3B8f9m4VeFJwfrvVuEXxOeEhxPW6IBda+1uZ+f5+P+04L1x2T9vQtza+59
4Eq1zerfS1xK+dTLwhOC9c9wYqjwzGB9c5PwK8KTgvXJDcKbhO8O1lt7RfsB
TYPz767Ck4SvFH6+cP44Q/ga4TXCC9Ru1PPcRgzS3AVqc9W/SfPrNdeXGCB8
s/AG4YVqN+n62zXWPHo/zVH/Rs2v09xitVs0P0JjLTS3SPhm4eHChwt/iY5X
v7zaGn1nCWuW+wy2jN7TaN1ymff6DI3VhH90zVWaKxHtFxwa7GcU0flBk2C9
GqPzg8bB+nSp2tDcHHdE9P5Dm9+u+Y2a2xCsb7/TNa8Lh+h84hCNf1NYw88U
HhSs7WerDUDrEEOjY/wK9ccEx/4ro/OBO4Lzv0HR+nRssP7uFK31LxJ+unD+
jZbvCzej/YQnCl8u/KxwF+F7ha8Qfk74lOjc4ELhpwrHVGLr6GB9OSBar44K
1pNXRecvdwbnh7P0navQOhqrQ64ufEnunOEA4anCF+fO2cpFa8x16j+TW3tO
KuxF4EnsF/33l6t/V3Cs7x+tL0cG58P3FvYm0DhoHXIatNCZwbnOh4l/xuXm
X2LSvomvVyeOmJPyKdaO30CuCwfw2/jNaGuegWfhb5KLc4Z5FjRqzdxr/E7a
o1wPB7J3WSNydTiBtcPDWp/7jONt8Q4XpOt5t3Ae3gAeAlwIh+JNzEn3Y8/z
bk8NPgtwHl4DHgVcCOfgBZDzwEVwGF7H7MzcBoeSu+NBwK1wEF7BrMzchEew
MTfH4R2g8Y7NHUPRfoOEa5ALCK8XnsiZF75AOI8+Q4uIm5nP1nL1d2bOAb4l
dhHDdH0l4ZWJAxal9ws3kGOTa3PGqkafKbTg6cFnDQ6FS9GEP7LeaMCUD4yP
/pv87c85c9EexqbcHIu3Qf5GLj5QuHJ0qxSd0zF3q1oTzbfU/Nv6m+M5E8Jd
hX8K5hDO5mmJW+4W/jZzTPwx7Wdyp11qP0RzEl5H52CuIsbhTeChEPvQ4Gjf
rsHa/PForwiPCa9pRbTXhCeFN/WEcKfMnhLe0vJorwrPCO8IziRX7BTMpcQQ
vAPODLEFTTxM/ZM1H0pY0xyaO+dC6+wM/u376PNO9KOu75DZ08DbWBTt7eAJ
4A0si9ZCaCK8i0ejvQ88OLw4cq6jc2socrHF0V4OHhFeETGNXBEOIdYtVTs6
s2eDd7Mk2rvBA8ILwpPtkfYb69Yv6S800KoUQ1enfIDYSswhFz4lOBbBMXAN
nNmnsKZ5PneMQ+sQA8n10SjERjQK3goaBO0Cx+J1oFngXjTUc7k1ENoKTbIm
d4xFq6CpXsitydBaaIx1uWMs2gPNhFeC5kFLEWPxNtA0xF40HLk3mgZth+bA
K4KD0SLEfPIfNApagJiOt4FnSqxHI6BL0CdoBzyJDbk1BV4FMWp5uj/8h+eF
90XMqx7tWeNdkzOVF35c+C7hCey56HwL/4R3zLs+J9jLJcc/NuEbUzznemLO
9MRHxCI8GvZ73WDvhhiFl4qnSuxCU8zMrRnQGk8Ij8kdw9pFczrcjgZBa+OJ
jE7Ph1eCx4nXiceKV43HOiHdH6/6suDfMzE9D54G3gYeKV43MXFG4l9iJXoc
L6dhsPeBp8N+PzDY68FjGpV+P94TMfTe3JqI2IrnMSTpId7P72iA3JqgSrRG
nZfb40W74jFxDXP4U9Q4puT2fKl9bM3tsei/f3M91httiOZD6/7rmRGLg700
NEen3J4IWgRN+HhujYxWpCZzZ+4chFoNNQhqKeTc1CbQFJNyaxa0Bh49+Twc
BpfBGUfl5oydiWPwP/HXmqX3PS3FG9Znvq6/QXiocNPonGdwbo4iF1oZzb14
aLxfPH9qK9RIqAU8qbGxuTVM++gaD7UeNGrt6BoLtRY8jLLRHi9eLxqvZrQH
QK2JnBNvAA+DWhU5Kt4Gnge1KXLUPSkHwztjD7AXqIlRGyMnqxtdE+uT9Ej9
aM8f/jogmK/RuItzazq0LzUYajF9hCtE56t4TWWD+ZwaBHxbLpj/qTFMTPsJ
rY3HQu2IHBnvheQfPXSZug2iaxTwbfngeELOCl9XCfY6qSFRS8LDKROdo92f
W5OTu5Gzj8+tocjlyZfxRkoF8z0eDHqNfANvhpoO/tKYdH6pkVErw2+i9kZN
5nD19w6OD3jkLYRLB8cXNDe1RDwmtDg5BrU+PClyD3JeanV4XOTCK4RHCo8X
bhutyfGO8ZzQ6tTEqI3hSZWOrgE0Ub8Iji9oerxoPDC0Pp4ZsZYzw9nBM8N/
xk9GX1KDaMy9g+PRU9GxiJgEH5Az4e2i0cml0PylUnwiF1gfrd+ogVAL2ZD0
BJoZ7bwu6QU8X7zfV6K9Kzw+vL6NSQ+RI5ArbI7Wu3iKeIuvRp8lPC+8r5ej
vUY8Nry256O1OBocLf5sdD2FnJHc8cUUL+F0vPG1SU/gKeMtPxet3anxUutd
E62lqIlQG3khuv6A5kf7N03zJwWf9UrpfbUO1lyvRccGYgTx+aWkh+AUvMI8
nf9GSWvi8dTPvQZ4P3hW+HX4b/g9eEIH5V5jvCI8skNy7zm8MzhiBNwZzB1f
RcdOYij5BZ5Wo9x7HK9rs/rfZNZ0M4JjGM97bnAsvFx4sfBw4U3CFXX915k1
6EKNbYs+q5xZYtuXxNDMHAAXfBzNpcQIYgX6mVwUj+t89XdHx3JiNLEaj7BC
bs8L7/D16NyXnBm9tzWaC4mRxMr3o2MbMY7n3buwP4WmR9uXLqzt0Y/4vUVh
fwoPDC+sRGEvDH2H91WysJajpoOfi4e4J3O+jbdYqrC/dkxuPxnPkXy8XIpP
sbDfhYeK/4d5ibeNp45fhoeZ5fbU8TbxSMvmrgHgnQbhtpk9WfzAvLAXj0eP
v4dnWSa3546X+U+0tsVDx+/bp7Be5oxz1omf+AHUwMhPziys/dB0aLuzCms7
NCJa8eloboVjyT3JOXYIzw/ORdqm83d2MDfh+ZbPXXPAC/5I81Mycyrc+kG0
diGGsR/XBtf6vyZmCr8bnc9TsyOf3RLtNeBpkH+8Ge1t4ImQD55dWMuiOdGe
b0dzMZxMfvFOdH5PjY9aHzkLucuS4NzqLWJ4Zk+DfAsPunFujsabfiOdHzwX
8pn3ormXGiO1xnZpP/YM3n+bhAdn9vTx9qmB1Mldr6E2Mg8Nm/nMcnYfij67
nHHO+sPRZ5EzzlmfH/0snGnONv8mAD8MvY3e7V041yMnZD2mR58lzgxnp1fh
3JackNzwvMJamJyX3Ldn4dwcjYxWfiSaO+AEuGFBdH7EO+HdzImuf9fNXZ96
INq/r5bWjxyZXPfb3LkzOSW581+5c004Y0XuMw6XUJOql/ue1KpmRvvtB2ps
gObmRnMf13Dt7Oj6Pe+Ud/tg9P2r565nTIvmCvYge/GcwtqQHIRcZFV0bCPG
oQ8XRusPzhP1wGfUJsP9GusMt0R7yfybFOoLq4XPzVxzRb8/mfQxGgl9gQeI
v4I/gV7Bo94rd42EfI2cGq1YNeXaPQqvJWtKvjIp+v3hYeNlT472bsj5yP3u
ieYeOAauWcseys3JPXm2wrkWngveC55DSeHtub2ICdFcA4fBZfdFn1U4B+6Z
Gs09cArcMiWaW/CQ8JImRp9XOAvumhW9t6lJUj+8P7peUzV3fbB74VyQHJFc
Eb+SekXtzH4ke4i9xJpS+2QPsZe4B9xQKq1X82D+YY1Za/YctazO6TxeHLx2
bVL87xZ83nkmno0aJfUKOBquJiZQC/wi2ovBw8LL+iQ69yIHIhf6Wnht5hok
fiS/id/GHqUWuita2+Lp4O1sj9475AzkDp9Ga0tyOnI79jR7u05mv3ZHdK5F
jkiuuFN4XmZNijYlRhGr4HBqlXyH9d+dzkfP9PeuDd4Ln0V7e+xB9uLnKV7z
byjwW5+J1q5oWLzH/wPfV8G5
"]], Polygon3DBox[CompressedData["
1:eJwt13f8lWMbAPDf75zz01AIFSppa9JeKppooOlta3pp0RAaUik0UBooWxkZ
ryYaNBQNNIiSbAovFSqV7/V5+uP63Pf1va/nnOc8537u+3lK9BrcdlAqKyvr
M5EjFqazso5lZ2UVEaXl2w1ensnK6q+dzeaz1mouY/3YLPaoeEe+iKdZaXkl
dV/ol2IlRWnjjeRPa6uKm/XnqHtSXRvj5djVbCS7QyyUv8JT8Rnyiuo+13+J
ZWlLsPJx3voF2DmiiGNqxnlqa4gh+k/FZ6nrZLw6G8yeZAtYB1aBdWKT2H3i
TXljcR9bKl+pboC6/CKfuMBYNWMztWfK84oL9auzR7VNxWT95Y5d7dhBxsuy
q9ht7E5WnpUQl4hSxhrGeWrPk58riurXiusTv0fcFtfNsS869kbjl7Lr2T1s
MqvDrmQT2OL4DWKj/EV+XL+oKKNuh/Fi8fnx/cavkM/X1hej9RepW6Kur/FG
bBx7g61gN7Py7AY2jt3ParMF4qj8IlGKfWL8Bfa3/EJRkn3MirOLYy74jAbx
H8T3izH6r6pbqq6P8UqsB5vOZrMWcX3juovixuoZe0L7sjxbv6S6Cup26xdh
F8V1jd8knxfXXUzUXxJzVN2txsvEfIzW2JXGntE+Jf+/mnxx3uo28jr8Du0C
9irrpqagOF8UM1bb2NyYDyJuovnqXlDX0XgVdhN7mM1lV7N67E72Inud9WCV
WU/2EJvDmrO6bCRbyF5j3VlDdg97nS1n/VlFdiObzKazhqwWG86eZ8+JtfKz
+VlxbeK+iHtW+7T8d+NnxX/n2E28AR+rfY0tY/3U1GYj4j9li1jXuNdYOdaJ
9WCn9J/jh+Xni2JsM/uRjYr/gT3PessPiAfZK2wxu13+vbiLPc6eZTfJD4rH
2NvxG9g4+Y1x3uxjtptNYkfEb/LioizbYPxetkP/8fge0dNxh9mvai6O8xND
2Q/s7phPca3U95L/JO5lz7JX2C3y99LJvDuWSeZXzLPV6WSt+TOT3LNx7/4s
HmAvxz3o2Nvka9LJvfxXJpk3MX++FbezGeqeUNdZ/p0YGusKm8e6yN9NJ3Ps
b8cW0i8s1qaTuX08k9zHcT8fE6ccd5mo5dhdcV7sz7gmogrbxnI7ppi2NWvP
DuvnY6W07VgX9o9+rvhsbSvWjh3SP4uV0XZg3dgJ/ULsMm0P1o+dEdeBVWJd
WW+Wjt/MqrDurG/sM7E+iBPyyrFXiDFqzhBF1LWUXyumyfOIi1kbeQfHHolr
6di/5OXiN7Ot7BD7QV445gJbw/I7trS2PevKjuv/oe4reW6RS/RXk1cUN3ad
vKO6P/XPZJdor2ed2F/6Rx17Mq6nqMl2svfTyb52KnN6TREb0smafjKT7H2x
B65LJ+vtP5lkHYz18EPRlPX1eYN8XiX5VnEtuzXmKKsq3yyasX5sMKss/0i0
YgPZcFZd/oFowvqwgayi/DPRmd3NxrOr5NtESzaADWPV5J+Lrmw0m8iayLeI
5qw/G8KqyD8Rbdjg2KdZTfmqmB/6L8Xcj/ngN+7gbfWHqhtlrJ78Y9GaDWIj
WA35TtGODWOjWX35p6IDG8HGsgby7eI6NoSNZLXku0R7NjzmD7si/ltxC3uQ
zWA3yPeLW9kUNpO1lX8tBrCp8fzC2snfEpeya1hbli1fEXsWa8JasmP676ST
Z4BDmWT/j+eA5aIEaxxzV91R/VXpZL09kkmeT+I5ZX062f9OZJL9P54DVqaT
54fDmWSdjvX6bVGVtfV5nX1eHvnGdLJfxYNaWf1yYpNozHqrG2CogvwbMZBN
Y7NYe/ke0Z2NZZNYM/kXohsbE88+rKl8t+jCRrEJrLF8r+jFxrMp7Fr5+c61
MuvG+rAM+1L0ZhPYVNZSvk/0YRPjfmat5Oc6tiLrwnrF41z8ZlaWdWTd2Un9
AqyCtjP7j3gk7h1RJ5Xk4Ufl7cQTbHN2su7H+t+azWTr2IfsrpgrbB7bwnay
8elkzbmI1WdXiP3ytmIu2yT/SN3YmPPsUbaebWZ3sxvYHLaRbWNj4p5kM9ha
9l58t7yZuJ+tkK9RN1jdNWw6W83eZyPivmcPsTXx/MbuiPuUPczeZZvYSNaC
TWUr2Xo2NO5TNiXmJlvHhsU9xOazrWwXm8CuZtNibrINbPjptfif0/ti7I/b
4/lSzI71Tb5V3ei4/9gstoFtYaPYkljzWY24fuyA/lJ2gbYua8x+11/GLtTW
Y03YH7E+xr2TStb/2Ad2+/zn2RH9QnEu6rbEXswOyc8VRdmH7FWW0ZaJY9ke
/cUxt7TVWX32s/6bcd9pq7F67Cf9/7FztFVZXfaj/jz2c3bc9Oa2Zi2bzw7I
U6IgW5dKniN+Ob13xB6yzTk/yQ7qZ+K81a1X9wbLq63IarBvYm5HrXYb+5RN
VPO6yMMqsOrsa/3XWG5teVaN7dd/hv0hP0cUYR+wTvHcqv0oO3l/u0/NHPGt
/GyRj71jPDueAbWNWHP2fSp5f+ubSt554t0nb7z8xfrDGsqbSb9LJc+Tw1LJ
O1686xXISd6ZOqaS97R4X8vJSeb9I6nk3SPeQcrlJO90LdjN8v/GdcxJ9t99
cYw4I+aRmrQoqK6ZvLXvPRj7qbr82gasKftWP0ddYW0Ldh37LfbTuIfjPFlD
tlc/Fc9a2qasFfsl1lt1ubS1WSO2Tz8Tz1Xa5qwN+/X0nMyXStaCWBMmqTnO
clhNeQN1X6aS963xqeQZO561i/hthdnlrGc8V6jL5biHY52Vn0gub9Zi44+x
79l52cm+uer0Wlc+lTz3xPPPwVjT1P2kf1LNeeI943PZd/E/iPxsJZsV+5n8
zPgf2VtsduwDURPO3o7/MPZCeZ4ItiL2Nd8zKe5PtooNVDMj1nx5dvxHbKnx
rupe0O5ie9mDah6JfUV+KtmSspYY765uofYzvo9NVfNQPF/Ij8fzoHgz9g11
C7Sf8i/ZFAMzYw+Rp+P+YstinVf3rHY7+5xNjv0p1gm2k+1hD7DO7Dm2g33B
7mc3sUWxVoiv2DT2L1aj+Aw=
"]]},
Annotation[#, "Charting`Private`Tag$219373#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0rsvpFEYwOGPcRsMK6Jd0RAFpSgoN4pViSjoiGK3WIlsQakQOh1/AS0R
+k3o3MfMuM2ystkIu2Tjfg3PSRS/eU7mO5nznsxX0zvQ8S0niqJR3SqsL/Vb
87lR9IE/WM0NNvKQrTxnO5/Zw9JYFCX01bqew2zmONs4xS7OsJ+L/M5l/ucJ
77Wta/3TioFSXGWaa8xwnTthJu5yk3vcYlL74Xd4wBSzTPMnMzzkDo+4y1+c
dY9TPuhYN+GOmjBbkiNc4iAX2MdpdnKSnzjGJg6xjrX6Yh1nNx+d8Zl/2cIs
G8K9+JEX9v3hncp1FfaqyoxlrGSCFSwNe1jCBItZwng4j0UsYL4KrWMsCP9x
+I6vytNLeKYnGSOa83H2/j68Acy/Svc=
"]]},
{GrayLevel[0.2],
Line3DBox[{690, 1005, 473, 689, 1122, 912, 691, 1123, 913, 692, 1124,
914, 693, 1125, 915, 694, 1126, 916, 695, 1127, 1010, 1229, 696, 1128,
917, 697, 1129, 918, 698, 1130, 919, 699, 1131, 920, 700, 1132, 921,
701, 1133, 922, 702, 1119, 1134, 923, 1006}],
Line3DBox[{704, 1011, 1230, 703, 488, 705, 1135, 924, 706, 1136, 925,
707, 1137, 926, 708, 1138, 927, 709, 1139, 1012, 1231, 710, 1013,
1232, 711, 1140, 928, 712, 1141, 929, 713, 1142, 930, 714, 1143, 931,
715, 1144, 932, 716, 1145, 933, 717}],
Line3DBox[{719, 1014, 1233, 718, 1015, 1234, 720, 1146, 934, 721, 1147,
935, 722, 1148, 936, 723, 1149, 937, 724, 1150, 1016, 1235, 725,
1017, 1236, 726, 1018, 1237, 727, 1151, 938, 728, 1152, 939, 729,
1153, 940, 730, 1154, 941, 731, 1155, 942, 732}],
Line3DBox[{734, 1019, 1238, 733, 1020, 1239, 735, 1021, 1240, 736,
1156, 943, 737, 1157, 944, 738, 1158, 945, 739, 1159, 1022, 1241, 740,
1023, 1242, 741, 1024, 1243, 742, 1025, 1244, 743, 1160, 946, 744,
1161, 947, 745, 1162, 948, 746, 1163, 949, 747}],
Line3DBox[{749, 1026, 1245, 748, 1027, 1246, 750, 1028, 1247, 751,
1029, 1248, 752, 1164, 950, 753, 1165, 951, 754, 1166, 1030, 1249,
755, 1031, 1250, 756, 1032, 1251, 757, 1033, 1252, 758, 1034, 1253,
759, 1035, 1254, 760, 1167, 952, 761, 1168, 953, 762}],
Line3DBox[{764, 1036, 1255, 763, 1037, 1256, 765, 1038, 1257, 766,
1039, 1258, 767, 1040, 1259, 768, 1169, 954, 769, 1170, 1041, 1260,
770, 1042, 1261, 771, 1043, 1262, 772, 1044, 1263, 773, 1045, 1264,
774, 1046, 1265, 775, 1047, 1266, 776, 1171, 955, 777}],
Line3DBox[{781, 1172, 956, 779, 1173, 957, 783, 1174, 958, 785, 1175,
959, 787, 1176, 960, 789, 1177, 961, 791, 1179, 569, 793, 1180, 962,
795, 1181, 963, 797, 1182, 964, 799, 1183, 965, 801, 1184, 966, 803,
1185, 967, 805, 1186, 968, 807}],
Line3DBox[{806, 1280, 1061, 804, 1279, 1060, 802, 1278, 1059, 800,
1277, 1058, 798, 1276, 1057, 796, 1275, 1056, 794, 1274, 1055, 792,
1273, 1054, 1178, 790, 1272, 1053, 788, 1271, 1052, 786, 1270, 1051,
784, 1269, 1050, 782, 1268, 1049, 778, 1267, 1048, 780}],
Line3DBox[{809, 1062, 1281, 808, 1187, 969, 810, 1188, 970, 811, 1189,
971, 812, 1190, 972, 813, 1191, 973, 814, 1192, 1063, 1282, 815, 585,
816, 1193, 974, 817, 1194, 975, 818, 1195, 976, 819, 1196, 977, 820,
1197, 978, 821, 1198, 979, 822}],
Line3DBox[{824, 1064, 1283, 823, 1065, 1284, 825, 1199, 980, 826, 1200,
981, 827, 1201, 982, 828, 1202, 983, 829, 1203, 1066, 1285, 830,
1067, 1286, 831, 601, 832, 1204, 984, 833, 1205, 985, 834, 1206, 986,
835, 1207, 987, 836, 1208, 988, 837}],
Line3DBox[{839, 1068, 1287, 838, 1069, 1288, 840, 1070, 1289, 841,
1209, 989, 842, 1210, 990, 843, 1211, 991, 844, 1212, 1071, 1290, 845,
1072, 1291, 846, 1073, 1292, 847, 617, 848, 1213, 992, 849, 1214,
993, 850, 1215, 994, 851, 1216, 995, 852}],
Line3DBox[{854, 1074, 1293, 853, 1075, 1294, 855, 1076, 1295, 856,
1077, 1296, 857, 1217, 996, 858, 1218, 997, 859, 1219, 1078, 1297,
860, 1079, 1298, 861, 1080, 1299, 862, 1081, 1300, 863, 1082, 1301,
864, 1220, 998, 865, 1221, 999, 866, 1222, 1000, 867}],
Line3DBox[{869, 1083, 1302, 868, 1084, 1303, 870, 1085, 1304, 871,
1086, 1305, 872, 1087, 1306, 873, 1223, 1001, 874, 1224, 1088, 1307,
875, 1089, 1308, 876, 1090, 1309, 877, 1091, 1310, 878, 1092, 1311,
879, 1093, 1312, 880, 1225, 1002, 881, 1226, 1003, 882}],
Line3DBox[{884, 1094, 1313, 883, 1095, 1314, 885, 1096, 1315, 886,
1097, 1316, 887, 1098, 1317, 888, 1099, 1318, 889, 1227, 1100, 1319,
890, 1101, 1320, 891, 1102, 1321, 892, 1103, 1322, 893, 1104, 1323,
894, 1105, 1324, 895, 1106, 1325, 896, 1228, 1004, 897}],
Line3DBox[{911, 1009, 1340, 1121, 910, 1339, 1118, 909, 1338, 1117,
908, 1337, 1116, 907, 1336, 1115, 906, 1335, 1114, 905, 1334, 1113,
904, 1333, 1332, 1112, 903, 1331, 1111, 902, 1330, 1110, 901, 1329,
1109, 900, 1328, 1108, 899, 1327, 1107, 898, 1120, 1326, 1007,
1008}]},
{GrayLevel[0.2],
Line3DBox[{251, 474, 1122, 252, 488, 280, 1234, 503, 295, 1239, 518,
310, 1246, 533, 325, 1256, 548, 340, 1268, 563, 1173, 355, 578, 1187,
370, 1284, 593, 385, 1288, 608, 400, 1294, 623, 415, 1303, 638, 430,
1314, 653, 445, 1327, 668, 460}],
Line3DBox[{253, 475, 1123, 254, 489, 1135, 281, 504, 1146, 296, 1240,
519, 311, 1247, 534, 326, 1257, 549, 341, 1269, 564, 1174, 356, 579,
1188, 371, 594, 1199, 386, 1289, 609, 401, 1295, 624, 416, 1304, 639,
431, 1315, 654, 446, 1328, 669, 461}],
Line3DBox[{255, 476, 1124, 256, 490, 1136, 282, 505, 1147, 297, 520,
1156, 312, 1248, 535, 327, 1258, 550, 342, 1270, 565, 1175, 357, 580,
1189, 372, 595, 1200, 387, 610, 1209, 402, 1296, 625, 417, 1305, 640,
432, 1316, 655, 447, 1329, 670, 462}],
Line3DBox[{257, 477, 1125, 258, 491, 1137, 283, 506, 1148, 298, 521,
1157, 313, 536, 1164, 328, 1259, 551, 343, 1271, 566, 1176, 358, 581,
1190, 373, 596, 1201, 388, 611, 1210, 403, 626, 1217, 418, 1306, 641,
433, 1317, 656, 448, 1330, 671, 463}],
Line3DBox[{259, 478, 1126, 260, 492, 1138, 284, 507, 1149, 299, 522,
1158, 314, 537, 1165, 329, 552, 1169, 344, 1272, 567, 1177, 359, 582,
1191, 374, 597, 1202, 389, 612, 1211, 404, 627, 1218, 419, 642, 1223,
434, 1318, 657, 449, 1331, 672, 464}],
Line3DBox[{261, 479, 1127, 263, 493, 1139, 285, 508, 1150, 300, 523,
1159, 315, 538, 1166, 330, 553, 1170, 345, 568, 1178, 1179, 360, 583,
1192, 375, 598, 1203, 390, 613, 1212, 405, 628, 1219, 420, 643, 1224,
435, 658, 1227, 450, 1332, 673, 465}],
Line3DBox[{265, 481, 1128, 266, 1232, 495, 287, 1236, 510, 302, 1242,
525, 317, 1250, 540, 332, 1261, 555, 347, 1274, 570, 1180, 362, 585,
377, 1286, 600, 392, 1291, 615, 407, 1298, 630, 422, 1308, 645, 437,
1320, 660, 452, 1334, 675, 467}],
Line3DBox[{267, 482, 1129, 268, 496, 1140, 288, 1237, 511, 303, 1243,
526, 318, 1251, 541, 333, 1262, 556, 348, 1275, 571, 1181, 363, 586,
1193, 378, 601, 393, 1292, 616, 408, 1299, 631, 423, 1309, 646, 438,
1321, 661, 453, 1335, 676, 468}],
Line3DBox[{269, 483, 1130, 270, 497, 1141, 289, 512, 1151, 304, 1244,
527, 319, 1252, 542, 334, 1263, 557, 349, 1276, 572, 1182, 364, 587,
1194, 379, 602, 1204, 394, 617, 409, 1300, 632, 424, 1310, 647, 439,
1322, 662, 454, 1336, 677, 469}],
Line3DBox[{271, 484, 1131, 272, 498, 1142, 290, 513, 1152, 305, 528,
1160, 320, 1253, 543, 335, 1264, 558, 350, 1277, 573, 1183, 365, 588,
1195, 380, 603, 1205, 395, 618, 1213, 410, 1301, 633, 425, 1311, 648,
440, 1323, 663, 455, 1337, 678, 470}],
Line3DBox[{273, 485, 1132, 274, 499, 1143, 291, 514, 1153, 306, 529,
1161, 321, 1254, 544, 336, 1265, 559, 351, 1278, 574, 1184, 366, 589,
1196, 381, 604, 1206, 396, 619, 1214, 411, 634, 1220, 426, 1312, 649,
441, 1324, 664, 456, 1338, 679, 471}],
Line3DBox[{275, 486, 1133, 276, 500, 1144, 292, 515, 1154, 307, 530,
1162, 322, 545, 1167, 337, 1266, 560, 352, 1279, 575, 1185, 367, 590,
1197, 382, 605, 1207, 397, 620, 1215, 412, 635, 1221, 427, 650, 1225,
442, 1325, 665, 457, 1339, 680, 472}],
Line3DBox[{277, 682, 683, 1134, 278, 501, 1145, 293, 516, 1155, 308,
531, 1163, 323, 546, 1168, 338, 561, 1171, 353, 1280, 576, 1186, 368,
591, 1198, 383, 606, 1208, 398, 621, 1216, 413, 636, 1222, 428, 651,
1226, 443, 666, 1228, 458, 1340, 685, 686, 687}],
Line3DBox[{459, 667, 684, 1326, 444, 652, 1313, 429, 637, 1302, 414,
622, 1293, 399, 607, 1287, 384, 592, 1283, 369, 577, 1281, 354, 1172,
562, 1267, 339, 547, 1255, 324, 532, 1245, 309, 517, 1238, 294, 502,
1233, 279, 487, 1230, 250, 473, 681, 688}],
Line3DBox[{466, 674, 1333, 451, 659, 1319, 436, 644, 1307, 421, 629,
1297, 406, 614, 1290, 391, 599, 1285, 376, 584, 1282, 361, 569, 1273,
346, 554, 1260, 331, 539, 1249, 316, 524, 1241, 301, 509, 1235, 286,
494, 1231, 264, 480, 1229, 262}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJztyLENQFAABcAXYgyFGbQSlQX+CBK12hZ/C2PYxSTUJlBcdckN6162JsnU
Je1rP9blPO7r4+y9995777333nvvvffee++9995777333nvvvffee++99957
77333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++993/7
B6HYnw4=
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, 3}, {0, 3^Rational[1, 2]}, {0., 4.732050469565248}}, {{0, 3}, {
0, 1.7320508075688772`}, {0., 4.732050469565248}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.8485099485020084`*^9},
CellLabel->"Out[29]=",ExpressionUUID->"ed0bfc0f-2ccf-44df-baf1-e1ff8ba55f77"],
Cell[BoxData[
RowBox[{
FractionBox["1", "160"], " ",
RowBox[{"(",
RowBox[{"34", "+",
RowBox[{"125", " ",
RowBox[{"ArcCot", "[", "2", "]"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.848509953135235*^9},
CellLabel->"Out[30]=",ExpressionUUID->"9e6011c8-6056-46be-9954-741ba803b666"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1nHl8TVfbv2OoFpGiPEiNdWJszVMVu8Y4MbVVSg0NQhERQ80zqXk8ig5q
Kh6lVJUTMY81xJSYnSAJmcgcQkvl19/73Ne93nd/Po9/zudcdvZZ58rJOve+
13ftKgNDPxmc38vLq/lrXl4F/nnc2GtH+Px3x7bisd2Bp971Tzezhtdp9Z2f
c48FHxt7K+Oyb5T1S/LtPIfzhPI1r1Z946p3y3IcKNUwPCRSeenoaS8+3nDX
unS6+u8OZ7Tyc0fXlb3sG2ctrHP6QojnhvLEja812FbpgdVhzcBEd4hHef2j
+wamZj+08nn9/3+xyh9kr521bkOi9cXeS4sdznjl+SMGv1xRL9k6PPTHck7X
Q+X3SvkNa7ItxXq7woitIZ5E5U9LTHk5s+hja1JU84YuR4ryi/NvfDeyX6p1
8+vCx9whj5VPedB8xscb0qzGzW919rjTlFdbPL1V/hvp1or0rbfz8jKU/8+w
vTL1OV7xyXMevxWfeIbjE89wfOIZjk88w/GJZzg+8QzHJ57h+MQzHJ94huMT
z3B84hmOTzzD8Yln+Jg1H7U/ucx4xh+fT46D45PnPOITz3B84hmOTzzD8Yln
OD7xDMcnnuH4xDMcn3iG4xPPcHziGY5PPMPxiWf4s8ZX4i/5ZqlnPOETz3B8
8vNwfPKcR3ziGY5PPMPxiWc4PvEMxyee4fjEMxyfeIbjE89wfOIZjk88w5+L
TzzDCybEjHNtNJ7xgU88w/GJZzg+OS8cnzznEZ94huMTz3B84hmOTzzD8Yln
OD7xDMcnnuH4xDMcn3iG4xPP8J6OmkNDHNnqmfeNTzzD8YlnOD7xDMcnrwfH
J895xCee4fjEMxyfeIbjE89wfOIZjk88w/GJZzg+8Qz/THziWc+T84v3np+M
Z94fPvEMxyee4fjEMxyfeIbjk3HA8clzHvGJZzg+8QzHJ57h+MQzHJ94huMT
z3B84lnPIz7xDB/XLSHftko56pn3gU88w/GJZzg+8QzHJ57h+MQzHJ+MD45P
nvOITzzD8YlnOD7xDMcnnuH4xLOeR3ziGT5efOIZ/mPzxt5LvzWeGS8+8QzH
J57h+MQzHJ94huMTz3B84hmOT8YNxyfPecQnnuH4xDMcn3jW84hPPMPxiWf4
OvGJZ3iUe8uiH3yeqGfGhU88w/GJZzg+8QzHJ57h+MQzHJ94huMTz3B88n7g
+OQ5j/jEs55HfOIZjk88w/GJZzg+8QwfuSZzS77ZxjOvj088w/GJZzg+8QzH
J57h+MQzHJ94huMTz3B84hmOT96nnkd88pxHfOIZjk88w/GJZzg+8Qx/FfdH
k9Rs45nXwSee4fjEMxyfeIbjE89wfOIZjk88w/GJZzg+8aznEZ94huOT9w/H
J895xCee4fjEMxyfeIa/U3rMytkDnqpnzodPPMPxiWc4PvEMxyee4fjEMxyf
eIbjE896HvGJZzg+8QzHJ57h+MQLHJ885xGfeIbjE896HTlySe3ki8YzP4dP
PMPxiWc4PvEMxyee4fjEMxyfeNbziE88w/GJZzg+8QzHJ57h+MQzHJ/4guOT
5zzuFJ94hpd+UdOnZbNc9cz/4xPPcHziGc71O57h+MQznOsjPMPxiWc49See
4dRLeIbjE89wfOIZjk88w/GJZ+1biE88wvHJc/UdmNlr3YZcKyGi0IVqzk36
SL+O5/weFmT0fPpNvbNWXN7EC+EhB/X/6ePxnP+H8/P8P+cZ9I21MsSTrj/H
75fxwX8b3rTrzI6Z+pyf43jOD7/p++GggSMy9Dge8cBzXqfyujGh20fk6ueK
1xlYb3TJtOxr+pz/h3MenXfldTme8zN+nvNzvO6dK2vq13S69BE/nBfe7c9j
na/6Htfj+H/45NZj3e6QDP1//PCc/4fznEfG03dR67z9ITv05/g88Jz/t3Pe
t9/EBandN1zU8zLOSL8dpee5zfjwcWvAPM9Qh/HDzx24Ma7/73PN55af43jO
y/Gcn+f8HOdhfJyHcXpPDvXO57Vbf79FIr0b1Rxw0+raqOhYL69j+jo+4UMe
Vwm+oZzjm9w9WWVguxhr9Y57X3h5md/b6fjERsNXe5RzfOvLCy9daRVrhZbo
Xc3L64oeH72t37+eP7qvXL+3632y5YMK8dZbF0+U9/K6psev/NRv9oaYOOUc
H/+L/6m4Sw+sfw56y8vL/P01+7l+q0nfGM7xFRaHPurVP8Hq0251YS+vGD1+
6xbX1k01Eqy8//l3X3m8XF9zPOfZWjQ3c210oh6v199ynRh9t9GLvLw4PU/L
Dd5LVr5KUq5/XzWXeFpPSrE2HxyWm5f3wKybtHzapUuA4Ry/y7Xls117Hlnj
v1uXlZeXoMcXvdr8tfZzDef4D1pcm77v3mOr44SrqXl5SXp84MUakRP2Gs7x
Vd3zvWNfpVq+Pd5Izsv7X+smtWJ+nXPDcI4/0ObJH2NLpVupDVo+yMsz6ymb
Lxb99XBamnK9zki5t2tW5QzrSPEx9/LyzDpLVMYu/+9fpCvn+PSS24c+L5Gp
n1u+97be3ODzeXaMfj7h5c4nrvCbH6ufQ72OKTbj7I1+8fp5gy/a3S8goPBD
/VzBV47pXOfNbxL086PrNo5ugT8UTNLPA3za5r8XzP0iWT8P8LtyPcvvHf7x
J8W3l7n/SH+/8H/tmNEg541U/T3q9UHrxsNaVE/T3xf8cnjMvZofpOvvRddH
yrz55fH2GeofHuP3aVRm1Uz1DG+zyCvCsdF4po7IOtWmx+SoWPWs/YyUHY9H
r4tXz1rf7R17ZU/bh+oZXqR3zTGnzyWoZ3idltsuf9ckST1r/3zZqjJTliar
Z/jMa8sOrr+Wop7hT+R6Fs86/nK1E+s1TFXP8MsX4k5/2y1NPcMT3j2de39A
unqGl+xgVcoXnKGe4eebvXo/pXGmeoa/NWP3u3P3GM/w25H1e/y7dpZ6pi7b
dPqWT7H78epZ+/PhC3q+Pf2heobPtAq5p/wzbjzDs3vks74dmqSe4V9NeW9L
6OFk9Qyv+s1fxQrne6Se4ZdnVtt9pPFj9Qy/INezeIb79Vr6ztMJaeoZ/tfG
nT6r56erZ/iSr0Jvfrg8Qz3DIzpt2xTnn6me4Q/HBG5IOmk8ww8MWHlmRoss
9QxPH1HtWtpvxjN17vyD62Pm7H+onuG5fg/+rN84UT3D3SM/37X6+yT1DM8c
crpBUGqyeob/0X1w4Jj3Hqln+PaMqEEvv3isnuHvlJqTe/7rVPUMnyzXs3iG
Fy+zulrnX9PVM7zwT+uXzdyXoZ7h/+7/SdE7vTPVM3zfkOKlnNeNZ/jaZ0/e
79UlSz3Dbz0JbeA8YTzDO62LeNmjUbZ65rohxPtYy+ThieoZPnne7xVWXUhS
z/DgT/od6/V2inqGD3vryh5P70fqGT63/7QyzRc+Vs/wievrdq++K1U9w5f3
qrrm9TNp6hnuJ9ezeIaHRV32P3YnQz3DV41+OTY6OFM9w7/+/Ni87YnGM3z6
kp6/1OufpZ7hJ6dGLN8cbTzDrbIBK1q1y1bP8C/zukfW+9145jqsldQVeIYn
Sf2AZ7i31Al4hg+QegDPuu4n3/t4hm+R73c8a47jwK7c1v98j+MZ/p/nGeoZ
Pidsa8z5aZnqGd6z66gXRZ8bz9rnrrq/YuHQLPUM31mwQEZevPEMb+i641f9
02z1rP2YIi8W/HrCeIbf6Vz35Kk6OeqZ69pBUqfhGf6r1GN4hreQugvPui4t
9RWe4QeljsIzvLzUS3iGUxfh2d7/xzO8epvKoSGFs9QzvHVEuRVxM7LUM3zN
4s5d+uQYz3oe7+ADbwZlq2e4/782dawTbTzDrYBJYXEtc9Szegioeqjbv41n
+gSfSF2EZ3gZqYvwDJ8sdRGe4VekLsIznLoIz3DqIjzDqYvwbO//4xn+Trcp
BQ4sN57hs0ut3uEukK2etW8990XX52Oz1TM8vIrz9Z1xxjN8i//J9q8656hn
+PbeJUaUcBvP8IclM7q+UeGJeqbvki11EZ7h1EV4hidKXYRn+FtSF+EZHil1
EZ71eKmL8AynLsKzvf+PZ/iItfcLlyyVrZ7hb3otfhA7x3jWdYr3Mk/XzjKe
4UXaF3v97b456hlef1je21dPGc+6vjCyWclxtZ+oZ/ixwKLPKy43nuljURfh
Gf5C6iI8w5dKXYRnOHURnuHURXiGH5S6CM9w6iI82/v/eNb1gsnlJ55baTzD
VzdbE7bdK0c9w0PbfHa2aXCOeoaHT0yL/Oaq8QwvGjnretz7T9QzvGStagEt
1hnP8IEd++Y/6vVUPdMXLCF1EZ7h1EV4hlMX4RlOXYRnOHURnuG3pS7CM5y6
CM/2/j+e4YXatWpbs3iOeoZfszYu+HSy8QxvNd8zpWe88QyvVD3y264dn6hn
eFDOh2t7/2I8w8/syrq4wuepeoZ3nzmuw5uhxjN91q+lLsIznLoIz/C5Uhfh
GU5dhGc4dRGe4dRFeIZTF+HZ3v/HM/z9lo8DRi8wnuGn1pyrXTbLeIY3nFOq
78GeT9Qz3H2oT/r4A8YzvHbped8FlX+qnuFhjyf++cNU4xne3CvuTAOP8Uwf
r03nhfOy/6mL8Kx9e6mL8Kzr6lIX4RlOXYRnOHURnnX9R+oiPGs/UuoiPNv7
/3iGB/w73HM7z3jWPMv9fpVqDH6inuFvzB3/4TdnjWf48inlBzet9VQ9w/f1
nPpLjYXGM/yPFY2CpiUbnzy+aetn0tftmVy445jkO+rzh3c2J4R6tloNfp1+
I2LsPfUZI/3UCe3j1yQ/i1WfzTdFBx0M+cFa9sWXpe4silefB6Tv6hj/+HTC
P+8fn+NeRbx8zznbGnbkcemNn5t+Y39ysLb+YX4Z/4/FG41o62/6ge1k/O6D
41qc/tT0/ebI+D/+e+W8Sb1Nf++UjN/9152WKT1MH6+IjN974apnWwJMv26h
jP/7WiMqtWyWrh6nLR0T4XIc1z4wPnnsvv6tgD5776vPFnv9e8e4D1srywdP
vzUrTn3elXWTqdb2w3cLPVCf0zptt1Y6Iqx2gfeWFRz1UH1WXOPZM9LjtjYf
rnKuxwnTvz0S710twLXXqvJsyfQV+ZLU51b6Xbb+20QZ//UhE8tX3W36bx1l
/Fdqb19Sefdj9VlPxp/0pEHXOdtS1WeUjH/Cwloj9n+Xpj5Hy/hrXwrLaBBm
+qIlZfxXG837eNBQ0//cK+M/UujzmN5VTf/t6Rc7Ux3O89YB/2v9p082/bc/
Xuuw1eU4Z/2akxN0tqjpv2nfvVLakLhZD9TzkI8nlBvp+cMKCojqXTXW9Dmb
PHvzqsd92rp36LOpRWolqudCP25b7HSdsgJfTJ8SNtD0OW+0ad0hPOSkVSlo
aEzGItPnrCh9rRxb/y1Txt/182MrzxQy/bdjMv6yGQv7V3hh+pzLZfwPFh6N
PZ9s+pyBMv6Do388WuOK6XPWk/HXXlDUs/I30+f0kvFPK7Z3/+8dTP8tSsZf
tcrA2n//ZjyHl32yzOOOsiLPT+20f5Xpv60PPjbC5YiyPsurWzzh5QP1O+/I
YqfTdcUKa3SqapuPTP+Nx3KHltQ9uiJRPe86G1BopOeStSEvdOKEk6bPOX3k
g6Me90Wr1ZvBh7okmT5n11JTJzldF6zP234QeveV6XNGSl8r0tZ/2yvjd6bE
jwzvYvpva2X8XRd92uNuU9N/C5Pxdy7tXlaxvOm/jZDxz7m7LOjUX6bPuU3G
36KUz6piw03/baKM//r2sSWaXjOenTL+k92n/J6/hem/jZ214meH84bV7v6Y
iOQJpv/W51q/uR73dWtzxfC0wGMJ6rlt9VqDXI7rVveDJ+PH/pmofmtPzrWc
rmtWbIEB44Y7TP+Nx74HQtbuaJOinl9UWvanO+SqdXv0x+PCepg+54MxfW6E
eKIth/dV77f7mz7nPHI0tv7bKBn/gUUp5zLmmv5bLxn/3f2Xvig11PTfPpTx
p5UtMuGvKqYvVEPG/8J36Ogvl5j+W3EZ//xGXz8blWs8P5fxLxtdLaxJP9N/
i5XxxyW6h944bjzXfVTnZIjnjnXqje3hM+qZ/luZli/WO5x3rKUH/lxVY4Dp
v+UtOzPV475tVX7jkzH9vk5Wz0nxK3u7HLetKYNHTS28LkX9Xm4c2MTpumV9
tuHLKbV/MX1OHnsUql1h327T51zveZ7hDrlpNV0Q7DPrF9PnbEuu39Z/e1fG
P7JvUt0ie03/rZSM37fthYOuDqYv9FLGf6DKiS7HdxvPD2X8zY+svru9rOkL
XZDx91kW9enw6ab/tlfGfyx5eR/feON5rYz/wM+BB6+1Nf23x59ciHGH3LfO
RtR13j1r+m9Xt3wbEeK5Z33h3Tb0o8Rk9XzwedBqh/Oe9X3xsX2//NP0OX/q
VH+sx33Xun5p2qzo/Kb/tmjd391cjrvWXK8573UrYPpvY7POvet0xVibFnjN
WfnC9Dl5LDKvezf/VNPn5PGVrf+WLOPvELLUq3aw6b9dkfFPqlG+1tvXjOf9
Mv5U/20nHzY3faENMv7qO6f6rVtvPM+X8a97NLxr//ymLzRKxl+x7rc+LQaZ
/lsvGf+Flz8u7nLCeL4q410v9Q+e/V//YZjHHWftl/pHPdfLd8sdEmd1l/oH
z/U+/7KDyxFnhUv9g+fNcy7uDfHEWj5S/+C57M6GVZ2uWOsHqX/wu/jGdysc
zlhramz+sw0qZZj6Tfpao239Nx6b1R1faNwz47mDjH99VMTPFfuZ/tsBGX/O
+eq5UceM5zoy/mmp7Vpvesf0hTbJ+GfvvTzgp9nG879k/BteW+adEms8L5Tx
B/atMHZuS9N/q+8qMN/hfGjdlLoIz1tkvFFSF+G5XMLlII/7gZUsdRGel/o0
ueoOeWBNkroIz/mbrW3tcjyw3pW6CM/jB+TfHeKJt65JXYTnRwuHVnS64rUu
wvMh6Ws9s/Xf6sn4P+4TuazXDNN/4/FocvQfr8Ubz2Vl/H3TKzZKbGP6Qotl
/Invv76vyCbj2UvGP85n5uKwPOP5Kxl/52E9Hgb1Mf23ZBl/060jZhzaZzwv
6xBdyulKtLpJXYTnAqOazXE4E61yUhfheYKM96HURXhOPVEw0ONOsA5LXYTn
wNThl9whCda7Uhfh+VrpqBYuR4I1XeoiPHe0mu4I8Ty0HFIX4dlX+loFbP23
pTL+RYWmr3m/gOkL5ZfxN898Xq3WINN/4zHgaKs3xhw3nh/J+APKjPauXNH0
hfrL+JuOX9Kj7STTf4uW8UeV2Jz9KNp47iDjbxJTeKNfbdN/S/trw8YQT7IV
IHURngc4Xi/udCVbH0ldhOfrXUKmO5zJVlepi/AcIOMNk7oIz0c2vN/H406y
WkpdhOcG59efc4ckWTekLsLz1pzXmrkcSVoX4Xmi9LV62vpvqTL+ctnR5UbO
MZ4DZfy72o3vczvWeL4m469UeeDigy1MX4jHqnNO/1FljfF8SMYfPM0zuFym
8VxPxv9DvpHuX/1N/22zjN9xZsPJrB+N506/htZxOR5bB6UuwvPRW9fXhnge
WfelLsJzw/wtijpdj6x0qYvwvK32pkkO5yPrpdRFeC7P94nURXhePn1kT487
ResiPBfcdu2UOyTFipe6CM83pK/1zNZ/C5Dxlzy/c9eHXqZfcUTG/6RGd+/P
+pi+UAMZv8/yv5t67TOet8r4X0spedu/mOkL6XpU9ejI94NM/22pjP9O7kdx
cRHGc34Z/8rfv9jXycf0MX4e1OqgOyTNGiV1EZ4rLNlc0+VI07pI+0LuIt+G
eFKtg1IX4blQ7KhCTleq9YHURXieXPjmVw5nqtZFeE6X8R6XugjPA/v+9LHH
/VjrIjw3kr7WOFv/bZuM/1z9douzJxnP5WX8f61t/PO9aON5uYx//acBncfX
Mn2hgjL+Lzs3iTs503ieKONfUS1fXtR145nHml8/b7ijpum/Bcr475c4F997
qvFcqGyxjh73P59X6WfimZwddRGe04ffdrgcGVaa1EV4Hii5R+oi7Scf3pLP
6Uq31ktdhOdOSUVHOZzpWhfh+aiMl7oIz8ul37XW1n8rKONP+DnE93Cm8TxR
xv/+sVlHN/ub/luajP/C6O9zu/xoPA+Q8fv3/K38iSzj+bqM/0jPFXuKtDf9
twAZ/zqfyg3qrzE+yXct837br9/ey+ozRvpL5GY5/qz0Q+D8vqpJ38zXlh+r
LD9HzpPzHJP/h3M8j/QJef6GeCM3C9e+aNWpQ3q1z9Xzk68cUj7yXMLLq8pP
yzjJi8I/kT7b8Df8Zt0rdFW9aF0gfshjwcm5kR+Ck8si7wInR0Q+A07uhTwB
nJyG5gOEkytgvRbOOjjri/r+ZN2W9TA464ys38BZF2O9Ac46Dv1xOOsO5AL5
HNGHxCec/Co+4eQD8anr+ZJnwyec/BU+4eSF8KnzhORb8Aknj4FPOPkBfOr1
uqx34xPO+iw+4awn4hPO+hc+4azX8PmGs76AZ+Y5crx4hpP7xbOuG0veEs+6
LiT5QDzDybPhGU7+Cs9w8kJ4hpNvwbP2oSWPgWc4+QE8w1nv1vVO4azP4hnO
eiKe4ax/4VlzIrJeg2ddh5T8M57h5KXxDCe/imc4eUs8w8kH4hlOng3PcPJX
eIaTF8Kz5j0l34JnOHkMPMPJD+j6sXDWu/EMZ30Wz3DWE/EMZ/0Lz3wPkxvH
M5ycOZ6VSx5Y853Cya/iGU7eEs9w8oF4hpNnw7PmNyV/hWc4eSE8w8m3aN5C
OHkMPMPJD+AZzno3nuGsz+IZznoinqlryNvjGU4+H8+a05d8NZ7h5IHxDCe/
imc4eUs8w8kH4hlOng3PcPJXmssRTl4Iz3DyLZp7EE4eA89w8gN4hrPejWfN
Hcj6LJ71+lL2I8A1fyfrifjX42W/A5zj4233Z+B48u1wjr9ru58Ax5PThnP8
E9t9BjievDGc4y/Y7j/A8eRm4Rw/2XZfAo4n/wnneD/b/Qp0X4jkGP9vfpF+
qtnHzvHk8eAcb7+/AceTK4NzvP2+BxxPPgrO8fb7Ieh4JOcD53j7fRI4nrwK
XMdju38Cx5O7gHO8/b4KHE9+AM7x5Af43HIdw74Y3S8knH00fA7h7Kfg8wYn
/8/nCk79yecHTr6azwmcPDCfBzj5VX7vcPKW/H7h5AP5PcLJs/H70us5yV/x
e4GTF8I/nHwLnrXPIXkMPHNdyH4i3bcjnP1HeIazPwXPcOpSPMPJ/+MZTl2K
Zzh1KZ7h1KV4hpNfxTOcvCWe4eQD8Qwnz4ZnOPkrPMPJC+FZ+/qSb8Ez19ns
w8IznH1beNY8ndSleIazPwXPcPZT4BlOXYpnOHl1vR8K+V+pS/W+HsLJA+v9
KchXSn5V77MgnLyl3i9AOPlA3fcunDyb5reEk7/CM5y8EJ61zyn1J541RyD1
Kp7h7J/CM5z9PniGU5fiGU5dimc4dSme4dSleIaTr8YznDwwnuHkV/Gsx0ve
Es9w8oF4hpNnwzOc/BWe6QOx7w/PcPYJ4hlOXYpnOPun8AynLsUznLoUz3Dq
UjzDqUvxDCevjmc4+Wo8w8kD4xlOfhXPcPKWeIaTD8QznDwbnjV3LPUnnuHs
r8QznLoUz3DqUjzD2T+FZzj7ffAMpy7Fs+ZJpS7Fsx4v+X88w8mr41nzDpKv
xrPmpyQPjGc4+VU8w8lb4hlO3w/P9Pmo3/AJp07DJ5x6DJ96Hqm78AmnvsIn
nDoKn3DqJXzqPkLZN4FPODl/fMLJpeMTTo4an3Byv/iEk1PFp+aFpS9KLpB+
HX05cmzwCMmzkbuCn5f81RjJ2cDJC9WRXAicfAv5ADg5Adaz4TdkXZv1Vzjr
sKwXwlk3ZH0LzjoX6zHwUFmXYf0AzjoCuT3t+0l+j5wZnLwZuSg4+ShyPHDy
PFul/oBHy3p9QVmXhfvK+jLroHDWQ1m3g7N+xzqTnkfWm1gX0f0Nsj5CTo5+
F3k5cl1w8l3kkOCVJI80Ub7v4QmyDn5D1jvhrNs2kvU5XZ+RdUaXrCdpTkTW
xVi/gbOOQ86MPhJ5M3JRcPJRrBPDv5b1YtY14axvsg4HZz2OdSM460fkrui3
kL9ifRS+QNZJWc/TXJys67H+BGcdinU++gys97EupTlcWZ/qb+szkFveausP
kL+taOsDkBeNtF3vk2+cZ7uuJ4/X1nb9Tn6sv+26mxzOIdv1NbkRX9t1NDmH
ibbrZdblb9iui1lHbmS7/mXdk3U7rn8vyvrdctv1L+t3k2T+5HqNfHKWzJ9w
8rTkPuHkP8kpwskrkquDk68jN6PX0ZKfIecBJ+9BLgFOPoF1dDjr6az7wln/
ZZ0SznrlcZknuZ4iJ0yeFU6ulfwlnBwmeUF4OZmvyKnAP5C8CrkKvS6WfAU5
ADh5ANat9TpX1q8nyXwIZ711jsyHXL+Qv7VkPtT1WJmvyDVqLkzmK3IecPIe
5BLg5BNYR4ezns66L/yirP9Wl3mP+p+c6gOZ9+DkKsk9wMk/sE4PZ72edWXN
p8j6cqTMb9TDn8t8xbq+7v+Q9X3WoeFHZT2adWjqPdajWVfme5n1Zdah+f6C
s37sbVtfpv6Bs0+H9WnqIl9b3a45dLnPCevNcNadqUs5P/fnYb0Zzroz682a
s5Z1Z9ab9X4/su78SHKfut4u+VX2w+g6oOyLIc+q66SSayV/CSeHuVb2n/B9
2kj20bAPBM5+EHKxcPKxhyQHqXWC5Dl9JbcHT5H84R3xw/cm+3RiZJ8GnP0m
7IuAsz+CPC6cXC75Ufh+yZGSd9T9mpJ7JJ+n+5Ilp9dUfi98/7JviH0vcPa/
sE8Dzn4N9hXA2V9AbljXlSQ/TM4VTt6VXCacfCY5QuWSJyT3Bif/tl/+jvQ+
LrLvqYLse4Gzf4d9JvABst+EfRFw9keQ49d1E8nzk4eGk4smvwsnx0veFH5d
cqfkI+HsHyHPByfXR/5M82iSQxsrf49877PPi31KcPYrsa8Gzv4a9oHA2Q/C
vgW9L47sXyBnDydvT15Z13Ekt0y+VvdRSc6WPKieX3Kh5Bfh5BjJ28HJ3ZEP
g5MTKyjzDt/76+R6LUnmJXh7yaV3lHmJ79NwmWcCuC4ity7XO5dlvtL9ynI9
Qt4aTu56nsxXfA+yb66RzFdw9n+5ZN6Bs18pXOYxODl58txwct3kj+F9JId8
RuYx7cvJPHNV5jH4RJlnBso8Bj8k80ywzDvw2XI9sl7mN3g1ub4gXw4nZ04e
Gk4umvwunByvj8xvfC+zr3CszG/aB5N5pr7Mb8plntkq8xuc/UdvyrwDnyfX
O/Nk3oOz74B8PJycPHluOLlu8sdwcsjkZeHkZpfIvEe9wX5J9vvB2feXT+Y9
OPPMBJn34OyreibznuZGZZ75XeYdOPtWQmU+hFeQ6zX2A+h92mRfAPl1ODl2
8tZwctfkg+HkhMmzwsm16v5G8ncyz7AfD86+vACZ9+DMM+x3grPvif05cOaZ
3sxrtvwk+x9MDvQ/+yDI68PJ7ZMvh5MzJw+t45dcNPldODle8qZwcqflZT6E
U2dSV1Gn/WG7vyK85OZmu3++bO6jCM9rnBuXeNXcLxG+7orvxg5LzX0R4V/N
7x2UWdXsq4XX8yu3M3GtuQ7U89j2I8Mb/LvY+Yg55jpE6+2pw97tvMesQ8A7
+t/ttemaqe/hQeH+w8ukmn6u5nO/yl0d+afJ7eMpuMyZ1u9FmvoMXvB5gYKl
5pv6Bv5hcOV3WlUy3/fw6Z+tulXnO7PuDn86ptOOBS+SzPWn8CjbfmH4yUH3
8h2PNtc/ev+8jXP8Rj8y6wHwEe+1atrjublugR9P928w8G9znQAfMviXpIbT
TK4bHz5dk+4v8jV1GzxyQYmCE1aZnIreH7H9wnMznpvvdXixkmdLnvA363bw
h7b9ufCoxK9v3ss112PwdxKDO7310vTf4R077MleO9XkcuFfZlb5a/Yzk//X
+rzsuaRxT00dpveTSPz+ZpP2pv6At509ZUi5MHNdCg+z7W/VfaXV9//92lSz
71KvI1xXn/+Za8YJH1p6Q5HFI01OnvFOrX/oTNoss88Ufiel5ler95j1Ibh9
vyd89Ovzc31Gmn2IcHeu02/J/8rh8/pLSpUNvvvP31GqrY9n388I31U1q9vh
7mafHf2olrb7icETbfcTgxe13U8MHmi7nxj8ou1+YvDNtvuJwTdIDof5B26/
b5j262z3DYPb7xsGt983DG6/bxjcft8wxsv3C5zjWcfRvry8j4YyT+ITzjyp
uU/hzJP4hA+WeRKfmg+ReZLxwQOfVS332yvTn9L9zaeHVZg50uyPg7tzH92Z
HW+8wVuEVem7t7vZHwfvvrbE3vYnjDf45VbRpwfWMfu24Ec73/6rwbc56oFx
MX/iQe/fKfOn7t8UHizzp15nCmf+xAN8sMyfvF/Nb4wf6mrd3exT0/tZvlfj
nue4eb/w0/XGnfWqY/ZPwWP7T0u5uca8X72vT07JjLC8HH1f6lvmT94XnPlT
90sKZ/7kfcGZPxm/9g/fKRu57j2z/0vvqze6yq2pa8z44UEfjsxfL8+MX3Mj
nevuuhX0RMfJ6zB/Mk4486fuN6QfKPMn44FnLT5X2vPKjAd+MsKr5YIgs08K
7ls1K8J59om+LucbJfMnrwtn/uT88HePBTfMO2POD+87c2HnrJpP9Tz8HPMn
x8NLTLuwKnHBU/37Z35lXoUzHzCvan9fOPODriPK30cpqfc4TvPwUv9wfjjz
M+eHM89o/kk4f3e6rsm8LvUkrwunvuLn4dQhjAfO9wLjgTO/MR7Nk8vfu+aH
hFNvME4+j9S3jBNOvcc4NRctdZHm0YVTbzB+ON9fjB/OPMz44dR1jB/O3zWf
Yzh/R3p/EvlcU5/zvrRPJfUq7wu+U+o63pfeT0vqJV4PTt3C+9V5VL6Xeb96
nxj5ftG+jPATMt/yfnU+kPlK80nksWV+4O8NTv2DB/7+uB7R+4cIpz7HA5w6
Fg9w6kM8wD1SpzEOOPUVfuD2+gRu/56F27934ENs8zZ8qG2e1LrPNo/B7XWd
vc/G+O35VY5nvMw/Xf9Ln03rNls+k/Pq37HUFZyf9838w/nhzD+r/0ufjde1
5xV5XTh1C+PQ+/XK97tef7IOJfMP49H7f8v8o9ct1EEy/4Ta+mzcP4dx2vN+
Ws8Jp47S+1BxP2ypN/T7Xjjf44xf82Yy/2g+QzjzD+OHM/8wfu2/yfzzlq3P
xnUK78uer+N9wakDeV9w6iXel+6PljpEv9eFUw/wfvm8M//wfuHUe7xfrSNk
/tH7JwinPuH96n1KZP4Jt/XZyEXgwZ5/0/37wq9I3YsHOPWh9ouFU3fhAU79
gxc4dYu3rY/0n/GZXA6c+Qc/mkOT+Qc/cOYfve+BcOoo/MCZf/r8l/4b3uw5
N7zBuS7Q/fjkzaR+xhs8TOpSvGkdJ/Uh3uDUdXiEU7/hU++7Jv03jvu/180Z
1v8DcWo22g==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJw1mXfgltP/xp/nPucuNERLQ9NWSYqGVUk0FaGpoUiRopRKKVRECSmSyN4k
iZakhCJRKaRB0dIQCv1e1++6v3+c3q/P6X7WGe/3da5TuXu/trckuVzuOf4J
xHnEXcQPiGfQmsHN87nc6fDlcDO4Htwe7gBfDHeDu8F14Wvh9vDx8DnwOXBZ
uD7cAD4BrgvXg6vAjeHGcDm4AXw+XByuDdeGy8D14PrwafBl8OVwZbgR3Ag+
G24Lt4WPg2vBteCdtEJwaeIuWmG4DHEH7Ri4JHFL3r87JW6lRbggsSbv0wZu
A++nlYCPIe6mFYHLEf8gbqdtox3g75LEwsTf9T3gSNyn3wMfRdyrcYELEBck
5if58EpwQ7gh/dfC4+Cx8HR4JbwSngZ/AX8BPwWvgFfAj8KfwEvgW+EZ8Ax4
HPwBPBeeCn8GL4cnw8vgpfAY+H14DvwYvBT+BB4Lz4Xfhx+HP4WXwVPg5fCn
cDf4Yfhh+EF4PjwffgheAC+Ae8NPwFPhG+Ap8OPwjfBUeArcHr4fHgd3hSfC
E+EJ8EJ4oeY6eI1prV1OuxMeQv/D8EfwR/DzTNxl/L2KZycSF9G/iP428N3w
3XA/+Gn4afg+eA78nuaRVgo+lriNVhAuQmzLMwPg2+Ar4dvg2+Gr4UHwHXAH
eCg8FL4GvgMeDHeEh8HD4Kvg2+GB8ED4MXiyxiF67h7kO7ejfyA8iP4n4A/h
D+FJ8DvwLPgReBb8LvwsvBj+OPuN/eEBeY/BjXBv+Gb4IfghuAs8Ah4B94Uf
1OfCA+BJ8CNwH3g8PB5uBfeD+8Gd4OHwcLgFfDN8M9wavhW+FX4a/hL+Em4O
94X7wi3hW+Bb4GZwH7gP/DMthY8mPpPN42L4bvgZ+FntV7gaXF37VfkIPlN7
Gj4Trqb9Cp8MnwwXg8+Gz4YTuCpcFT4KPg0+Hf5bOQUuRfyFVgAuRDyaZ06H
z4B/099wceJfyllwCeKvei/4uGztvQ2/A/9DKw+XJx5SvoNPII7imWfhmfBo
eKbyLDwUngZPg4fBT8FPwXfCTyonwIdp5eCyxHvofw5+Hr4ffhV+VXkLPgk+
CX4Afg1+Df6XdiJcgZijvzKhMpyHq8BV4Dvgl+AX4cHwy/BL8CD4RfgF+N7o
cZnN+rwveg7eg++JHtN34ZRJvA4+l74EvkJ5X8/CKiwNlFDhppob+D9aE/gs
4mFaI80xMZ96b9eCQ+o8WBs+QrsUrkn8l3YJXIP4D60xXJ24m1YLrkQ8RGuY
OFfcGj2Xz/A9+0XP3wz4rug5exMeFj1nr8PDo8f9DXgrXJX3KEWsx/fZo/GG
+0TXiadUNOC/CXnizdHr6Wn6e8Ob887tfaPX+nT4puh6Mw0eGr0WX4Nj6jxY
h77CqfP4BfBB2vlau8Q9tHM0l8Q/aA3gU4k7aTXgCsRdtLPgivoutJPhE4gH
aPXhU4j7aOdq3RCL8VlDVHvg/bTztJeIRVOvj4vgvbQ62kvE32m1tYaIx6Ze
Nxfr99FOgksTt9FOgcsQC6TO6efBBVPXgLpaU6lrQ324SOo1dyFcKHWOPh/+
k3aB9qTWWuqaUQ/+i3ahcoHmk3YmXE5jSbtIeYG4nXYqXFbzT6sGlyfuoFWH
TySOiN4nbzH+d0fni3fgkdH75O3g13VmfjvlPcbXwV3y/sxOcEf4z+Ba/x/x
X9rX8BPEQzmvjV9ynod2xHZ5f69r4GvyHu8b4BvyHrOr4avznp9ecK+8v28X
uHPec9sVvi7vOekJ91SO4vMqwp8n3u/KgTWzXKoc9TY8En4LfivvOX8Ffll7
XHsang33z3LvM3lrGOWNSsQR9L8Jv6nfq98An0o8QqsJn0W8i2fegN+A/9N3
hWsovyo3wOeqrmotwOflra+6wV3zXtc94B55r6/r4euVo6K118v8voHR+ulF
eFC0rnpJY8/aGM5rGtFXFh4PN9daDq5Z3xJvj9Ztz8MDonXhTHhUdA6dBfeP
1oXPwndG5/1X4duiteNz8OBonfcKfDKf9aTmTPspuNZ/o3nXnoBLRus6acgr
eE0RrXH4AvjY7JmL8t43V8FXZfWroXQOXFT7D74QLgk3gZvApeBL4UtVc+CW
cAvle7gV3BKuCF8Bt4YrwK3hVnBpuCncNJtr6bdJ8Obo50oQbyc+Sv9j9HeG
74Lv0ljAG+ANmgN4HbwWnhSsLbtproj7sjWvfFmJWJH4Ls8XhU/UnMHfwevg
3cSfacVUt+j/nvg9/S/Aa+E1mjN4jeYRPkj8jfZrzueVbzXmyt3wD/APqn3E
P2l7aYdz1uh7aIf4nhVU14L3qvbsJumBYP2u/pm8zzfwavq35nwO0pb6J+fP
/p12JOPV2vPZ+x+r5/J+z1mJx+AAbUsW9bdK8aGMN2dxf9Y/h9esIn6t2gP/
CP8Iv5348z9M/KB+16acz2h//a8/evzmJ/4uh7Pv83f2ef/7rEPZvOTzfu3m
bJz+zd5zX/Z/m7Pf90/2G//K+rdkv1W/eXv2zJFsPt7kszcSN/Lcdq0zzSlx
VWJO+Y5vwT/BP+U9H3ovjfvU4N+uMdiUjaHGUp+5LxvDW6J1eRI9BwezNfBZ
4ueVq4ZE6/gYnQ+1rlSvDyq3wqfkrYeki2YnXh/6/TuyqPHdqd/Na5doHIP7
d2bP7FF91tjyniXgS+BLeE2a9deBR0fr0aOIPyX+3KPhTYlz5jHwA9Hn26Kq
X9Iy9BdSTQzep6rjO7IcrnxwVPC+Vs3anjivFlZdS5x7i0hrBe931f1nsrW0
SmMYvN9VB/+SpoCPz3TNlfCVWv9ZntHeP5zlH+WtP7N8VVxjnuXwYvDD0ed2
6aKCvH+LnOuvDtHKS6r7e7M8fxx8JMtd0iEFgvOVavF/2RhKM8zN1sb7ifXj
SHikaoE0U86asExwLZYWmh6t76TzTg6uHdKBJYPrsnRRVbh7ztqyNNwxZ/2j
1+is1F9rIbimS0usT1xDC8AVg+ustMR3ifNYQbhccC2WJtmQuD5qg9YPfk+d
w4oEj610mjSpvkN3PqtR8LlVGq96cN2XHm4MD8lZ674WfaaSfi4UXDtUJx+L
9jikb88M1gbSw8cFawlptlOD66a08enB2kAau2hwffl/zRasQ6TligXrDelA
6fcJ8AS+5zb4fM2F9lBi30aafwrtK/gGnp8Y7AlcBz8a7Ev0gCcH+xU94Ufg
z/Xb4ceC/YrrtX6CPYSu8OPBZ8Ze8OLEZ3Dp51fg9fB6vs8nic9r0vB3BGuM
ljy/JPG5THo+5O3hvEPf0sTnL9VxaYF58Dz+//LgdSUt2izYE5CH0RYem7Mu
vRV+Ab4U7gY/nrMuHQS/DreA2wT7M9KiHYJrqGqpzjrT4el81pXBnob07aLo
c7jOQe2D/Q1p+2uDx1xat1/wmaspvDCxX6QzwkeJPSWdHb6M9gWkN2Yknouv
pN+Cf+M19I8J9l7aw/cFezLXwmODvZQOcC9eex88htf2hO+F74Nvgh+AH4Cv
h++B74W7w6Pg0XAPeDR8T95jpzEcBS9K7I/pTCRNpHn/nP5xwT5MRz73rmCd
2QYeGey9tI32PuSBdIInBHtTXeCHgv2ozvD9wf6ActsIeDZ8Bf1DgjVta3h0
sN/VDh4crFdbwaOCvayr4DuD9bDO7ncHe19X0j8g+Px7Odw/+Fx8GXxbsE5u
Bv+Q2FfUueDbxF6EzozfZ7laeWB1Yp9BuvGbxH6CzncrEp+7pV3XwdVzPnes
Sexj6LxZPthXWUZcm9j30Pm0bLCXspT4R2I/dr72X2LPQbq0BK03vER7MctL
qokrE3sg0sk7s9yumnKQ1hxeQP+WxH6szvK/JPZg58BbE/uuOvv/mNjL1flo
f2IP9kN4V2IPdq5yQ2IfRtr4QGKveJ7WbWKPQhp+d2K/9wN4Y2KPV9q7VLAv
9AmxeLB/9TGxUrAHtVz5Mnh/NY7W+9qPr/Mbl0V7KNL/yxJ7JtL2c6I9L/kS
yxPXfen/3sEeaRP6uwf7kDrDfhHtoejs0DXYq9T596bgM5HOUj2C/Uydl28M
9hIvgVO4A7yYGIO98Y+IhYPPOMrhteDB8NfEasFe30pizWDP8CtihWCv7FNi
lWBv7TNijWC/8UviGcFe4griScF1RzUtBHvvi4j/JK4dquP/JvbGF9J/WrCH
+QXxlGBv83P18cwj8KM6t6XW98rtdYK9zdXE6qm1uPbj4ujX7KD/4+zMsBNe
Eu1v7oJfjfYQ12p/R3tbu7Wfoj3BNcqp0R7rOu3LaF/1e+X4aL/1O+3jaP90
vfZotP+oM91b0Z7pBvip6LO/xuqh6PsG7ZGx0R6ialnTYM/zJ+KlwT7nRuWr
aJ9BYz4t2lvQevs02r/7Xa+LvofQep4QfVehvTM++j5De2FptK+3R7kq2lf9
Db4s2IPdRGxIGwP/QJwV7R3/CHcK9gn1fMvgudhCbBHszW4mdszWoWpN8+C6
oxzcOdhX1Fx0CfYJNRdX0CbDvxCvCfYYf9V7RHtoWj/X0Z7Peb4uCM7tGvML
g/O/xnxD9HlVOvOi4HqhMX8p2ufVmffi4Jqiufs6WnNLh6+J1sfSw/WC/Wet
hxnR3p3W4fnB9UVroElwDdKYvBjtF2vt1Q0+h2rNPB3tGWrdtg720n8mfh+t
y6WrF0R72dvpXxvtQUiHDw2uI8r/q6O9DJ1Nfoo+S0sb9w322zXvw4I99gPq
i/b3NXeTo++6lKPWRfsa0vaPRt+ZKQ+8G30HoDX2ePSdmfLzwGBvfz/xq2gf
/yC8Mfp8Ls18i17PM/uIP0Sf/3Xu+DH6/C8dfnPwXcBe4uxoj15re2X0PcEf
cJ/geqfc9W20XyMduyL6XkG/65tov0a6d0q0T6g8/F20Z6GzySPR93/KaROj
796UT4Zr/+f8WR9G6wnNxdxoraA13CvYl9a+WB7tg+s7vxftL2hfjIu+t1Md
6RnsbytXvB+tP7T+74++U1TtWBV9ztR5UHco76mOkp8+iNYuW7WOgs9B0gzr
o/0UnZueiPZUVWd15tTZTueOqdGequrspOi7RuXSz6M9d83X/GidtA1eGH2P
oj01Ptj30zx+Fu3Xa+7mZXpLe7BVsK+i79YgWDvpvFAytQcnzXla6js/6bdT
U9/zSb+dkvr+TxrvvNTnbWnmc1P7BdLbdVL7INLYm7JzvO5w66Y+e0u3107t
s0irn5D6nk+ap0zq+0LpHHkgOltrTEulvieTLi2X+p5PGrhq6rtAaarnor19
1a8SqX1G1daaqb0e6fziqT1E1crjU3uFquOlU99BSmudlPqeUvpNPqrmRfNz
JNgnksc+JvruR/rkxNR3hNJ47YLvTTQvFVPfiUofnp76Xkq699noewfV3Aqp
7wilG89IraelUa8OvpdR3pgZfe+gmlsjtSclXbop2mvTubhaah9K2nVLtO8m
30/fWeOveSif+k5UZ5Yqqe9TpTkrp76LlQY+J7W/prPS5sx70lmmUup7WWlm
+VTyLerTdzbt5cSe2/8BW+jpzg==
"]], Polygon3DBox[CompressedData["
1:eJwtmgf8T9Ufxu8ZhJJdGv5INlFStLVVKhpKCKGddtpUaBdpaRJlJStRdkop
QnsPTUp7aP6ft+e+Xp2+533P/d7f/d57zufzeZ6jYb9B3c6LRVGcr/9lfV6f
iuJlfd4nblShKIaIXxTfLW4gvl38pni8uJX4GvEL4tHi+uItdZFdxLuEonhX
/ed1fFvx1+I14jt0/lviCTreWufP1ecG8bdq89S/U+Nvq/+4+rtofKh4ufge
cUPxcPGr4gfFTcQjxCvFD4mbiruK7xOfLt5CfKN4lfhhcTPxmeKnxNeKa4nv
1D111b111bG/dexW8eHiw8Q/iS/X+YvUv0P9ejr/dPGT4qvFNcQniG8Vny1e
qO+eIh4lvlC8RHyk+DpxP/Fc8W1qnXX9w3XsZx07Q+PT1L9G/Zq63h18R+NH
6NivOna8xm9R/yz1F2hsK7U24jY65z31T9T4beJzNL5IfLvaERrrrGO/6NjN
Gl+t/qPqt9D1R2n8JI1317GosZvUXlP/EY0313hljTcRN9U5b6v/Hu9RbZLG
J6tV0bGmGm+mY++oP1qth/on61jWtRronGPFx4r/Uv8sHZuu/hD1a+v6V4gX
i+8U/098nfgl8b3incR36Xon6/sn6VjS2FVqs9S/S+OrNHadWjuNt9Oxj3Ts
So3PVH+U+is1dqPaPhrfW8e+1LGO4pvUv0nHKun6e4qHiIeKK4p3VVuh/itq
uzF/ND5H43OC5/tx4rniucH31108X7wgeP51Ez8jfiZ4fu4lvll8s7iy+Ajd
353iPtF/r2f2enkheP104J7FNwbP12PFT4ufDl5PvbPn//Lg9XCA+H7x/eJq
4pPEC8QLg+d/r+z1+mLw+tor+fceq78fxftm389IjW8lPl48j7UXvN7bigey
fsT/qb+r2uniM8SFxncTn8V8FAeeT/L9nBH9fNtr/ArxFRrP3J/GHxYTZKpU
8HweIz4z+vmcoPOfFT+r83cW99f4ZPHlGq8u7ieeKL5MvLW4h/jRMl5x//sQ
U5hP+v6W4j4af0J8qcarik8WPyIeFD2+n86/l/kWPD5K4++KJ2q8rXj/7Phx
X/DfO1m8ULwoOH70yI4Hi4PXy2/6/lrxWvFqYp9af/EA8T+sVbUB4oHif9Vv
rXaauL/4b/UPy77fJ8Tb6HqdxZPEk8R1mT/Zz2OyeDvx4dnPY6J4W/Gh4seJ
l+I64oOT59/J0c//tOTrDY6eL7eIl4rHRd/vDeIVzKfo5z9Ux3ZjLejYhzo2
UuPvcH/qt9H4FhpvIG6gc95Uv6JafXF98Rvq7652Oe9PnHT+Udnxcpp4hwoE
HT1n9duq+776Q5hj4l3FH4iPyY4XM4Ljw4HJ6/ek6OsdnR2/pwfH487J7/9U
jVcQV9fnARo7QMc2qH9KdrxZEhz/Roj3Vn8vHftC44dkz6exwfHpZvGB6h+o
Y99p/KDs+ftIcHy+QdxB/T117DONDxN3FHcQrxMPF+8l7ij+XNwpe76PCZ7P
XbLj/VPiHcXDdP+viB/QuY15f9nz9dHg/HSTuJP6nciROmdQcnwaFv2+K4l7
iVuJ1+vcnuK7xBeJl/K31c7R98/Rse01Vis5VnfU+L28G2Kqxofq2N7kRuaE
+HrxvuIHxOeKzxXvKH5IPEg8iDkgflB8nvg88f/IvdmxgRhRl9ggPlt8tnib
5L95pviMwveyQjw7OMafm3zPj4nHFf4t3MPF6h8ffW/7iC8SHyeeJj5AfJm4
u3imeJnaBH1/vI711th+apeof4LGp2fn5HEaH1s4V++vdqn6J2p8BvWK2niN
P6ZjvTRWMzkXddD4PdmNWEhMZKyTjl8gPl/tYY39pWPLNLZM3FLv5zEduzT4
HlppbJz4kuDf1IJYJr5IfKG4iXis+OLg39hM3FbX7yPuI96S98E9kWt17Eyd
O1Pjn3tZFalck6zNhuX6Yk2yNlmz74rHiy8L/s276FqPiwcHP8O2yc/0+uCa
hWc9UXyl+Epxe3EQb1S/elFsLhgfUbtQ4xcIdyb2Zsd+ckC75Gu2UZuQ/bcm
qV2l8as0voeOd43OxeQoctVkjV8tvlq8p3iK+BrxNbwD8QXRa5U1Sy7ghzck
N5fx45Dka5+i/uzsOc2z7RY916npWKt1y1qPOTNC3x9eeC5RE1GbNYuulahp
qMVaRNc6zJHhOn9Y4blDDGimfqXo2ECNxlpnzZPrZmXXAsRkYjP3dEtwTce9
zhHfFlzDHZZc81C7NY+uhagZR2l8ZOFa8jnx3eLR4qPFz4pHB6/5LuJ54ruC
a9CjxH2jcz05n1pkPnNYfLf4mOQakVi4fXTtSE1K7NouulalJiYWNoyulalJ
qa12iK5ViXEtxFXK2Mc74F2EMraTQxrxmqJzC3OIWHRk9NziHRM7ukS/e+YE
seao6LnCOyfWHB09F15WmxVc851D7cg7FM8Qn13ONWLL4dFzjjU/TOM3FI4F
zEli0RHRc3VodK4h51CrvpCda8m51CIviqeIp4gHJOeMlqzF6FxCzG8urlzm
AmrSnVmL0bXq02q3BmuEQ5M1wgPiBwprB2r2B8UPFq7lqVlbqb9VdC1LDqLW
rRmdm8gB5OYa0bmBOcXa7BE91y5IrkeHR9cTb+uznvgf/Y1rNb6cuoncRowR
/ys+TtyIOJK5cd2XPhqLvxT/hwZhbevzC/HWyfVLO/H34qrifuLdxBuza35q
//r6XCf+k5xObtDnZ9nrC+3RVPy1OIhPJPaJv8qOccS6NuLvxNWS66ndxT+I
N+nzaHE9fX4qHhmd2xcX1hZogKXiJYW1AZrh+eCaBy1xgM7vK+6n9qfGXsmu
PalBL9Z49eR6rb3O+1Fjv+uzC7lPn59kx3xi/57in8U1kuvlPcQ/iauITyW2
ir8VVxb3FrcWbxBXFPcUtxR/k51jWMsXR+cechZr85LoXDY4uf68PbpeuDBZ
j4yIrv9Yw8SugdFrmxjAXO8fHRsuS9YHt0XXX8QEcvtp0bGCGEIsGxAdW8jB
5M4bonMza4xceH302mONkZuvi157rAnm7pXRa2WsPtcEa87N2jO7Nl5TuPZk
TTH3r4hea8yJ/ct6jblyUbIeuTG6/r00WW/dKt6+gt8Ra/Hm6HcH8+5uiq6P
yXHo43/LevQlcVXxRnJudk6k9vyvzJWzmNeFc1oMzm+b1P+Mc5L9i0rqf0PN
o7EfgnMvOfhVjb2mVkf9X3RssMZfZ45Qu+vYWuamWkX1v6SGytbUaGs09Kca
+zi7niQnkZvQ1Ghrcgq55SNiZFlv/hh9Ta79BzmWv8fvFm8iR4tfEFcRbyAn
i5eJK4vXU6OIV4pr8beoAcRv8Fx59uRk8YviLcXfUpOIV4lri3+mRsj+zfz2
H6lpxG8xL8V/k6PFbzLPxH+Rw4n/xHT199CxHzS2KNpn+pyaUJ3FcbOsLL6g
Rs32jPCOeIdfR3/nEPXrRF+LZ4Q3s2357Hgmh4q3KZ8V9T96ghhJrPxErb36
FfT5lsa/1+fB4tr6/EC8Jtrv+E3fWcv8yNYn6BH0Ax5Lm1KvrI9u+6u/dTnG
O+LdbFG+O2LSfsHnEKt+T67PPivrtYVxc4gt1lEjZ+cEap2e0bmCGoBap1d0
bUDM2Vfn7lc4FjFneJYVo+cS98jaqRZ97zwzzq0a/SyZL8y134Pn5l26/nuF
vRz8jgrZ/lzNcpx31jI4p/Mu8RTwFohBeG14EngTaBC8PzwPvA9iEl4dngne
CTkI7xDNjHZGM+PFEa9nlvmb+IyHgpdCjMLbw4OYV8ZjvEg8F7wXYgJe0Ujd
XzdxN3KarnV3djzvS86kPirrNzw86ruF4iMLe2rUKwvKeg6PjHpnfllv4clR
7+Cx4LXgSeFFoonJD88V1srUD9S2naP9j7nifQp7TuRrcmzr4BxO7sWDwYvB
w8H7JAajhdGAxGZiOloQTUusR9NOL+sRvEdi2uSy/iDWkdPxCvAAyPXkALwA
ND65AU2IF4CngFZEc44p6w1iL5ry0bJ+xgtF06Jt0Zx4kWgWtAse1RnZHsfi
Mr/iFaKhl5T5lfhOvF9a5lfiO5p9RlmPkY/xuPC68KTwjqm30F/kEHIJmpt6
fmzh+os1WD14TrI25yXXn2hg6p2NOra7uJY+b6F2So5nFcv19FByvKpUxpcB
2f7va8Qg/a2Hk+N1lTLeTEiuj3Ys88MjPGPmUhmvxyfHt+3Leql/tt+8Stwe
fyXbj14p3l38su5ra/Fsfe4l/lifjcVZn9fr3JnJ9RweC/XwjORYRcyiXn4i
uX5uWMbXV9WeK+ffJeTi5Phat4zPA7P929XkCPzp7NxLDu4gHpcc37cp88HY
5HxRu8wHjybnk5plflsmPrOwRkerv5btj64o5z9rjLW3a7n28PS3Ds6R5ErW
5EHq7xS9Vp8v63E0M9r52eRxPBbq2UXl9fDg0Rfk/Ell/U0t8Eyy3sCzod4m
ZrcPjunE8qVqW6j/lY6dp7HZybmUnIoem5Osb/Bk0CcvlPU/HgVexZJkPwTP
Gb1FjmgSnBPIHYuT9T+eOXpwqbhHYc8bPTgreT7iSVPv4yG+XD4vvMV24leD
58joZA8YvTu0sB5Dn+G/XFdY3+GJohfRh+hHPFW8a/QjXiueJ3oOPYj+Xas2
uLCGR1+jj9GL6D/8jc17IMEeGnsjJFveBe8ErYTHi9dLTds6ueY9Mbgmpxam
pu0eXLNT61LTHhNc41PrUpOfEKwZqNXRBMcHawa0Ap4r3iz6Ey+Wmp79AfZb
qPXxN7qW8Zy5RY18dLBmqFz+vjVqu7JOkv0C/AY0PdoezXFcsIZBi7Dmno5e
06zFT8kl+vxO/K/GO1ZwzVdDvCI63s2hFi/s3ZAT2QvAkyNXssfzcLAHyN4P
Gung4BoC7YSGQEv0EzdK9iCHBPsZeJN4sPghaDS0Gh4m3ig5BG+zU3kNvot/
gkePn4Sfgh9CzftksIdKLUzOYe4yh8lFeIbzg2tkvEQ89juCPVG8dzzBLsGa
Ca8QzXFUsKZBi6DxDg2uoShMiGnENmLmPckxk9hJjLk3OaYQW6jn70+OOcQe
Ys595fMn9n0l3pT8THm269X+Vv/x5LGv1f5kfUfrAzz0f8QLxF8WrsEpFF+J
9pqo0f9IjvkHBccQcsHl4sbBMXZ1dAwmFhOj70725PDmzicmJcfg3YPXLLGZ
NYNPsKaca8SQasE5gNgylZwuvlbcMXkOMZeo6ajtuGbDZF3J3xrDGiq8p8nv
+UvHTgvWzI2TPX+8//7ipuJfxKcEa8I6yZqY2oUaBq2MJj4suOZFK7OnwN4C
GrV5siY/JLhGRqujSYlVxKya5Xym1mP/jr0u9iDYi0CzttT4pmx/sW/h38F6
QQehh9A/7Bmw14SfxV4CeyLsjbDnw94MeyjspbBnwt7LH7reqcEavr74V3HP
YI96O/Fv4l7BmngH8e/i3sGauZ746WT/CU8dP4U9h5eC96TZi5iW7L9Qo1Kr
fpQcK4mZ+B/kfHI/NQFa45Nkbw0Phvr6Q/GIwp4f3h+aplGwR4XWQRPtFJyD
0Upoup2DPR203mfJsZUYizf3cbK3g6eHtzdd3LpwDUgtuG12rOAd8a7QAOjH
GuX8OTx5bvXWtZ/JrmGoZdBYaIU+2b+dnEJu6ZudW8jJvM9Ts2tVnhHPqruu
d7v4XHKXxr5Krv2oAfEmv07W63hQeFGvJnvNeNB40SuTvWk8aLzo15K9Yjxs
vOxXkmMvMRjv9+Vkf449APYCViSvNfYI2Ct4N9lvwFPGW16V7IXjgeOFv5fs
V7DngL//frIfgWeHd0cNRC3UsLD2RPOij9E0aJt1yd4nnid+xufJfgqeKP7H
F8l+Cp4p/kbd7LVCzCP2fZDsn+Dp4u1+Kb6nsEeKn7I62RvHM8c7r5Ott9hj
wt/aLjt2skZZqztn505yJrlzx+xYSwwmFtfPzp3kQHJhvezYTM4j9zXKzqXk
YHJx4+zcy5pmbf8vOzeSg8nF5Da8ij/U5qv/XHR/ndoM9Rtm50ZyMrmZcf23
OYZxPjmwgfrfB+fGnbJzNzmd3F6P7xWO2cT11zleOKY/Jm6VnfuIccS6qtla
GQ2NHm2ZHQuIMcSa5tlrnzXP2m+RvfaJGcQOcsjH4qeic0u17FoPDwH9XyNb
b1Pfof+rZ+thPBL0f61s/YsGR4vXztbieEx4TTXV9i2sqdHW5LBPxNOjcxs5
7iPxtOjcR832vnhKdC3XLDuWEcOIZSk7N1FT8PyaEM8Lx3Rie9Ps2E4MJBbu
QP4tnIPJxdtnx3ZiPrGfnPWBeGqZy8jBH4qfjM7NeDQtgj1nvJtPy/XOHgJ+
AXOSudmpsBdLjU+tT42PF4SGQcugIfCC0RBoCTQC3g81PlpjTHTtj6fUPNiP
wmtCQ6Al0BB4TcvFU8VTxQOT//0HWg3Nxt7Bdzo2ofCeHH7mL8laEc2IV/tz
+ffQ2Ph5+GvsXzEnmZvLk/cD2MNkLxONhlZDk+HtodHQamg6vDY0HdoODYi3
hGbi3m6J1lJoHLQO+hK98qvGny/sEeMVEzMfInYVjqXfJvuh7Aniz65P1q5o
WPYSn0z2SngnvJspyc+KGEWsoiahlvg1uFZ5KtkbaBXsl01Mzj3kHHLP1OR3
yzPn2U9Orm3IQeSiScm5iJxF7uqXXauiMZifLybvr7Dnyt7rS8n7K+zhspf7
ffk82NPAr92Y7C3gMeDHbkj2e9mDZS/2m+RnwR4FexU/Ju/VsgeDHzywHL+q
nAs/iWcX3tPFPyan3R48R8l1PyR7P3hA+MdvJO/XscfIfhD1IP8mjDXJ2nwz
2R9jz5D9oLfLfMmeIPtBryfX1tTY7OfwTHm21Ah4kx3LfHRMWcu9k6y10Fzs
B76V7Lex58j+0/8BVKXUyA==
"]], Polygon3DBox[CompressedData["
1:eJwt13XclUUWAOCPey+pCEiKItJSIiogUirSpaRISctKKVIr4YrUkkorpSCx
Eq6Ja4BBSclKCoKu2IoJiv2cffnj/GbOM2e++903ZuaW6jWk7eBUVlbWXpFd
1M1kZQ0By7JlZS2V357OyqrHhrLlbBnrzD4WfdkkNom1kZ8SfdhENpG1lucz
tzBrxG5h3+jfyEZp17A1rJe6j0Rv9hB7iLWSF1BXlDVhjdl3+p/wftrJbDK7
Vf6lGMbmsrmsm/wrcR+bx+ax7vIvxL1sDpvDuspv8hmj2Vq2lvVm+VkR1pg1
Yt/qv8ObpJKLVE3/atFA3Ui2Wt1qQ3ey4qwC68Q6smzsf6IXm8AmsJbyS9SV
Zx1ZB5bFPhV/Y9PYdNRBflr8nT3GFrO+8vrmjmCr2CrWk+VmOVhNVoN9oH8F
LykqG2sgX6K9Qlyj30tdz7g28lLiWtZb3svcvOaUYTVYX9aH5WPlWC3Wn/Vj
BVhZVpP1Y31ZftacTWUvsZfYMNaMTWGb2CZ2L7udLWF72G42iZVm17E+rDe7
iLVg09kr7OWolRfjRUV5/RuMLdS2EjP1X1Pzqrkjjbdhs9kWtpmNZnXYIDaT
zRJ53NM8LCerJa+p7kP94nGfxJXG6sof1X4tH64/X918dT3kuXh2VoNdF/dY
3lLMYK/KX1E3Qt3looSoZKy+scXam8WYuDfxvokC/pciagqLCsbqGFukvUx+
qaioXy+eB21rMUt/s3mv+YxRxj8XA9kMNpN1khdTV451YO3Zn/o52B/yqyLY
e6wIK6Ntx9qKh+WL493Uzy6kWZvjGuncqZ0d1481U1OT9Ugl1zOu64txH8Xt
bIp8irqG6i5jVVhX1pXliO/FKrMurAvLyTqyR1PJ/Y77Xs516c+eZh/IT6pb
qO490Z4NZ8NZfXltdXfFM8EWsttYin0qzysuEvvlF8d1VddS3lLdz/qFWUlt
G9aG/aJfiF2ubc1as3P6BVkJbSvWiv2kfz3rr13AFrC2PndprJXy3CIHez3u
XawJ8mdS/3/ts16L98fcjdqT/ARbYCA7+0leQZRn+43fwAbEM8EWsXbqarDO
bCqbym5mx0QHNoKNYA3kx+O6spFsJLtRfli0ZkPYUFY7nTyTY9l6tk5slzcU
49gG+Xp1/dUdEq3YYDaEXS+/Rd14tpFtYHexD0RXNpaNY03i3VVXlrVn7dgf
sUewB7RPs41sgLoPRTc2jo1nTeUHYk1gA9kgVvP8Ox0bWbxD8S5tkR/kLdkg
+WB1teTvxvrE7mYDWQ35UdGO3cfuY/XkS2I/k+fMluyLW4y/zzppR7FR7Cb5
CXEHu5+NYY3kn4m72XQ2g3WUd/H/LI99hO1jU2MeW8b2ZUv23ynsZNSyMWws
ayzfL5qyAWwAqy7vbO5StpftYZPZEdGWDWPDYi9PJ+90adYw9l9xKj6Tf6J/
QXw/dW8YLxtrvqgSa1Ls/9pu4kn9g+oOqptpvAdbzQ6zw2w2u4DlZfVYPfZ5
rN9sfVwzdpzNU/dKrKfxDLMb2I/6t6mbp93KtrJxal6NfZTVYXXYmVjTY53Q
1mV12dlU8k5/Js8v8sU9lr8c652x2vLa6n6ItYav1B5gB9gMNc/Fus0qsors
I/3u6lZpD7FDbJaateKH2CNEYbbPeF51+bQNWAP2hX5JVk3bg/VgecxLs2/k
JSNifWH/Ej/KLxRF2DvmPMV+lhcSl7B3Y3829yntMfYem6PmTraGHWFH2MPs
QnYRq8/qs8/0r2VttEPZPSLlAS7BqrJu8m7qcpm7KvYk/cvZ88bOyZ8QX8Z3
jefD2Db+HZugXclWskHyFeIredH4Lmy78R/YP+P7xLrBhsuXx54U+1qsgewt
49+zh7RPsifZYPm34kG2gq1gA8/vqxlWLta/uCfxXUXBVLLPxn57PK6x2vtj
P41339x+8k1xbVhVVpV9Gucbteu0x9kxNlfNf8TFcc1i72an9fuq26A9wd5n
89U0YZPYC+wFNoStFF/HPYt9he2I78ROyy+NfYbtZC+xAtpr2LXsa/0X473R
VmFV2Cf6GZ9x9vx3je88Wv6CujzGKssrq/v4fN2Z8898PPv/jf1JXBXPsLy7
utzmPS9ys0qsEjulv5p9F3uRKMj2sLbmztduY9vYA7EesgVse6z/7B/sKlFV
VM8kZ+GV2j2x5uv/rl8xzjaivCgXtbFvGFuuvTLOM/E3Mkn945mkNuZU02/E
nsgk54ju+uN97gOx9np2z6iZw56TP+d/GSvfm07m/BFnh1i3zkf0r2aN41nS
7k4n/8NvmeTz4/9orD+RPR/Pvb83NN5J8Qh7lj3Lxsg3i1LsZtaQ/R730Nxm
2tFxf9h1as7Ge8PeZG+y6fIt8VmsGWsWx3v5G3F9WAvWIn5KyF+Pa8Cas+Ys
I39TXM86s86sYDp5p29NJdckrs26OK+KP/WrRag7avwttbW1d7A7WCH5rnSy
pv+aSe5L3J+m+pPjOVT3orp72L50ct3+zCT3Oe732+nkt8O5+J2gX1rcqj83
Psvct8wdz3akk3PpT5nkjBtn3VhnY71dEe+NuMtYT7FW/6i5R409omaN+F6e
K9ZAtjeVnPmnpZLzR5xDinsOHlf3RTy3sR6r2xrnB3ULtTvYDvagmg5sEdvJ
drIJbHs6OcOfzSTn6DhPd4rzLdutbpe6ienk3PkY28Xejr061gx+Ltbr+D/U
HYh3JZ2czc9kkt8I8VthZzo51/+cSX53xe+vp8Xv2ZI1NtbaI8b/zbJpS7My
7P1Usq4VSiV7dOzV0+I8qO43/ctECXWHjT/DUtoyrCw7ob+e/SIvFusOO8g2
sF/j/4357FDssenkt9KPmeT3RfzOeDb2qdj/Y81RdzKV/Easnkp+A8RvgdPy
vwDvJtrM
"]]},
Annotation[#, "Charting`Private`Tag$223584#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0rsrhWEcwPHH/X4LISF/AEVGBhkZZGQQGwNGBpnEYKbs7IrBYGKzcdzv
KbcUIsn988TwPZ/f6X3r+b3vObX9w11DSSGESb0ozs+60lpyCIXcZA0PWc9b
tvCNHcxICaGHZSzXoLmJY2zjNLs4xz4ucoQrnOAGP3nHH23H73qMs4USTHCH
O9zlLve4x33u84AHPIyZj3jEYx7zhCc85SnPeMZznnPV89yHv5dwgS89ad5u
W5zhOse5zCEusJez7OQUWznKRjZowFzCbqaxna/OauY16+L+rOa76zf8VoE+
9KAqO+WzknmsYG5858xhKbNZzCwWMZP58X5lmHOYziymxd+NqXEnOjak0Bph
ycfl///hF5M+R28=
"]]},
{GrayLevel[0.2],
Line3DBox[{701, 1024, 1025, 1023, 481, 1022, 1015, 1129, 923, 702,
1130, 924, 703, 1131, 925, 704, 1132, 926, 705, 1133, 927, 706, 1134,
1026, 1233, 707, 1135, 928, 708, 1136, 929, 709, 1137, 930, 710, 1138,
931, 711, 1139, 932, 712, 1140, 933, 713, 1338, 1017, 934, 1018}],
Line3DBox[{715, 1016, 1027, 1337, 714, 496, 716, 1141, 935, 717, 1142,
936, 718, 1143, 937, 719, 1144, 938, 720, 1145, 1028, 1234, 721, 1029,
1235, 722, 1146, 939, 723, 1147, 940, 724, 1148, 941, 725, 1149, 942,
726, 1150, 943, 727, 1151, 944, 728}],
Line3DBox[{730, 1030, 1236, 729, 1031, 1237, 731, 512, 732, 1152, 945,
733, 1153, 946, 734, 1154, 947, 735, 1155, 1032, 1238, 736, 1033,
1239, 737, 1034, 1240, 738, 1156, 948, 739, 1157, 949, 740, 1158, 950,
741, 1159, 951, 742, 1160, 952, 743}],
Line3DBox[{745, 1035, 1241, 744, 1036, 1242, 746, 1037, 1243, 747, 528,
748, 1161, 953, 749, 1162, 954, 750, 1163, 1038, 1244, 751, 1039,
1245, 752, 1040, 1246, 753, 1041, 1247, 754, 1164, 955, 755, 1165,
956, 756, 1166, 957, 757, 1167, 958, 758}],
Line3DBox[{760, 1042, 1248, 759, 1043, 1249, 761, 1044, 1250, 762,
1045, 1251, 763, 544, 764, 1168, 959, 765, 1169, 1046, 1252, 766,
1047, 1253, 767, 1048, 1254, 768, 1049, 1255, 769, 1050, 1256, 770,
1170, 960, 771, 1171, 961, 772, 1172, 962, 773}],
Line3DBox[{775, 1051, 1257, 774, 1052, 1258, 776, 1053, 1259, 777,
1054, 1260, 778, 1055, 1261, 779, 560, 780, 1173, 1056, 1262, 781,
1057, 1263, 782, 1058, 1264, 783, 1059, 1265, 784, 1060, 1266, 785,
1061, 1267, 786, 1174, 963, 787, 1175, 964, 788}],
Line3DBox[{792, 1176, 965, 790, 1177, 966, 794, 1178, 967, 796, 1179,
968, 798, 1180, 969, 800, 1181, 970, 802, 1182, 577, 804, 1183, 971,
806, 1184, 972, 808, 1185, 973, 810, 1186, 974, 812, 1187, 975, 814,
1188, 976, 816, 1190, 978, 818}],
Line3DBox[{817, 977, 1189, 815, 1280, 1073, 813, 1279, 1072, 811, 1278,
1071, 809, 1277, 1070, 807, 1276, 1069, 805, 1275, 1068, 803, 1274,
576, 801, 1273, 1067, 799, 1272, 1066, 797, 1271, 1065, 795, 1270,
1064, 793, 1269, 1063, 789, 1268, 1062, 791}],
Line3DBox[{820, 1074, 1281, 819, 1191, 979, 821, 1192, 980, 822, 1193,
981, 823, 1194, 982, 824, 1195, 983, 825, 1196, 1075, 1282, 826, 593,
827, 1197, 984, 828, 1198, 985, 829, 1199, 986, 830, 1200, 987, 831,
1201, 988, 832, 1202, 989, 833}],
Line3DBox[{835, 1076, 1283, 834, 1077, 1284, 836, 1203, 990, 837, 1204,
991, 838, 1205, 992, 839, 1206, 993, 840, 1207, 1078, 1285, 841,
1079, 1286, 842, 609, 843, 1208, 994, 844, 1209, 995, 845, 1210, 996,
846, 1211, 997, 847, 1212, 998, 848}],
Line3DBox[{850, 1080, 1287, 849, 1081, 1288, 851, 1082, 1289, 852,
1213, 999, 853, 1214, 1000, 854, 1215, 1001, 855, 1216, 1083, 1290,
856, 1084, 1291, 857, 1085, 1292, 858, 625, 859, 1217, 1002, 860,
1218, 1003, 861, 1219, 1004, 862, 1220, 1005, 863}],
Line3DBox[{865, 1086, 1293, 864, 1087, 1294, 866, 1088, 1295, 867,
1089, 1296, 868, 1221, 1006, 869, 1222, 1007, 870, 1223, 1090, 1297,
871, 1091, 1298, 872, 1092, 1299, 873, 1093, 1300, 874, 641, 875,
1224, 1008, 876, 1225, 1009, 877, 1226, 1010, 878}],
Line3DBox[{880, 1094, 1301, 879, 1095, 1302, 881, 1096, 1303, 882,
1097, 1304, 883, 1098, 1305, 884, 1227, 1011, 885, 1228, 1099, 1306,
886, 1100, 1307, 887, 1101, 1308, 888, 1102, 1309, 889, 1103, 1310,
890, 657, 891, 1229, 1012, 892, 1230, 1013, 893}],
Line3DBox[{895, 1104, 1311, 894, 1105, 1312, 896, 1106, 1313, 897,
1107, 1314, 898, 1108, 1315, 899, 1109, 1316, 900, 1231, 1110, 1317,
901, 1111, 1318, 902, 1112, 1319, 903, 1113, 1320, 904, 1114, 1321,
905, 1115, 1322, 906, 673, 907, 1232, 1014, 908}],
Line3DBox[{922, 1021, 695, 921, 1336, 1127, 920, 1335, 1126, 919, 1334,
1125, 918, 1333, 1124, 917, 1332, 1123, 916, 1331, 1122, 915, 1330,
1329, 1121, 914, 1328, 1120, 913, 1327, 1119, 912, 1326, 1118, 911,
1325, 1117, 910, 1324, 1116, 909, 1128, 1323, 1019, 1020}]},
{GrayLevel[0.2],
Line3DBox[{259, 690, 482, 1129, 260, 496, 288, 1237, 511, 303, 1242,
526, 318, 1249, 541, 333, 1258, 556, 348, 1269, 571, 1177, 363, 586,
1191, 378, 1284, 601, 393, 1288, 616, 408, 1294, 631, 423, 1302, 646,
438, 1312, 661, 453, 1324, 676, 468}],
Line3DBox[{261, 483, 1130, 262, 497, 1141, 289, 512, 304, 1243, 527,
319, 1250, 542, 334, 1259, 557, 349, 1270, 572, 1178, 364, 587, 1192,
379, 602, 1203, 394, 1289, 617, 409, 1295, 632, 424, 1303, 647, 439,
1313, 662, 454, 1325, 677, 469}],
Line3DBox[{263, 484, 1131, 264, 498, 1142, 290, 513, 1152, 305, 528,
320, 1251, 543, 335, 1260, 558, 350, 1271, 573, 1179, 365, 588, 1193,
380, 603, 1204, 395, 618, 1213, 410, 1296, 633, 425, 1304, 648, 440,
1314, 663, 455, 1326, 678, 470}],
Line3DBox[{265, 485, 1132, 266, 499, 1143, 291, 514, 1153, 306, 529,
1161, 321, 544, 336, 1261, 559, 351, 1272, 574, 1180, 366, 589, 1194,
381, 604, 1205, 396, 619, 1214, 411, 634, 1221, 426, 1305, 649, 441,
1315, 664, 456, 1327, 679, 471}],
Line3DBox[{267, 486, 1133, 268, 500, 1144, 292, 515, 1154, 307, 530,
1162, 322, 545, 1168, 337, 560, 352, 1273, 575, 1181, 367, 590, 1195,
382, 605, 1206, 397, 620, 1215, 412, 635, 1222, 427, 650, 1227, 442,
1316, 665, 457, 1328, 680, 472}],
Line3DBox[{269, 487, 1134, 271, 501, 1145, 293, 516, 1155, 308, 531,
1163, 323, 546, 1169, 338, 561, 1173, 353, 576, 1182, 368, 591, 1196,
383, 606, 1207, 398, 621, 1216, 413, 636, 1223, 428, 651, 1228, 443,
666, 1231, 458, 1329, 681, 473}],
Line3DBox[{273, 489, 1135, 274, 1235, 503, 295, 1239, 518, 310, 1245,
533, 325, 1253, 548, 340, 1263, 563, 355, 1275, 578, 1183, 370, 593,
385, 1286, 608, 400, 1291, 623, 415, 1298, 638, 430, 1307, 653, 445,
1318, 668, 460, 1331, 683, 475}],
Line3DBox[{275, 490, 1136, 276, 504, 1146, 296, 1240, 519, 311, 1246,
534, 326, 1254, 549, 341, 1264, 564, 356, 1276, 579, 1184, 371, 594,
1197, 386, 609, 401, 1292, 624, 416, 1299, 639, 431, 1308, 654, 446,
1319, 669, 461, 1332, 684, 476}],
Line3DBox[{277, 491, 1137, 278, 505, 1147, 297, 520, 1156, 312, 1247,
535, 327, 1255, 550, 342, 1265, 565, 357, 1277, 580, 1185, 372, 595,
1198, 387, 610, 1208, 402, 625, 417, 1300, 640, 432, 1309, 655, 447,
1320, 670, 462, 1333, 685, 477}],
Line3DBox[{279, 492, 1138, 280, 506, 1148, 298, 521, 1157, 313, 536,
1164, 328, 1256, 551, 343, 1266, 566, 358, 1278, 581, 1186, 373, 596,
1199, 388, 611, 1209, 403, 626, 1217, 418, 641, 433, 1310, 656, 448,
1321, 671, 463, 1334, 686, 478}],
Line3DBox[{281, 493, 1139, 282, 507, 1149, 299, 522, 1158, 314, 537,
1165, 329, 552, 1170, 344, 1267, 567, 359, 1279, 582, 1187, 374, 597,
1200, 389, 612, 1210, 404, 627, 1218, 419, 642, 1224, 434, 657, 449,
1322, 672, 464, 1335, 687, 479}],
Line3DBox[{283, 494, 1140, 284, 508, 1150, 300, 523, 1159, 315, 538,
1166, 330, 553, 1171, 345, 568, 1174, 360, 1280, 583, 1188, 375, 598,
1201, 390, 613, 1211, 405, 628, 1219, 420, 643, 1225, 435, 658, 1229,
450, 673, 465, 1336, 688, 480}],
Line3DBox[{285, 692, 1338, 693, 286, 509, 1151, 301, 524, 1160, 316,
539, 1167, 331, 554, 1172, 346, 569, 1175, 361, 584, 1189, 1190, 376,
599, 1202, 391, 614, 1212, 406, 629, 1220, 421, 644, 1226, 436, 659,
1230, 451, 674, 1232, 466, 695, 696, 697}],
Line3DBox[{467, 675, 694, 1323, 452, 660, 1311, 437, 645, 1301, 422,
630, 1293, 407, 615, 1287, 392, 600, 1283, 377, 585, 1281, 362, 1176,
570, 1268, 347, 555, 1257, 332, 540, 1248, 317, 525, 1241, 302, 510,
1236, 287, 495, 1337, 691, 258, 481, 698, 700, 699, 689}],
Line3DBox[{474, 682, 1330, 459, 667, 1317, 444, 652, 1306, 429, 637,
1297, 414, 622, 1290, 399, 607, 1285, 384, 592, 1282, 369, 577, 1274,
354, 562, 1262, 339, 547, 1252, 324, 532, 1244, 309, 517, 1238, 294,
502, 1234, 272, 488, 1233, 270}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJzt3HlUTe3/N/AyK0MJKUMiSSKVKNMlRVGZGowlkimRqYgylHmeVUiEQjLP
fEIlU0Jn6JxOnaYzm1JEhmfvZ+3P91nPude1cH/v3/P8c//1WnfLoq777M9+
7+t678xnLBwfUk9HR2dAQx2d+oyuea59jh6TAfrU3spcFutCnAYmrlltXQno
APsPCUnH+CTG4oY6sboc0Nfi6xtiehYT/8/y+0velgEat6P0zIcNpeRtcEs7
ZbMyQLctKZn+ybOcBJ0fGGnrUQro3PcbK5WnK0j76rkXjyZIATXq29o78G4l
mRT5WvPzZwmgnsYtljLfL3FO4bs4q4oBDagNG3swUE76brdvpHorAfTV7u+N
dHQUxNH8VkgnPQmgK79Ie33doiCB3zvbn3EqAnTQ7Y8WdfWVpH/+0ne1kWJA
d33cO2/CAiXZ3lA6WJ0tAnSnWPAz/pmSEJtm4Xc7i+D/VkVdz9XcOqK8f9fz
t9bz5fXLO6s3FAK6yum12/j5qn8/n//wei5/cO3LmM9CQA+9npAef0H173r+
zfWM4NYxQms980Kyx9wLFwLaruzAnENvVf+u5z+8ninO40p8qwSAfn1Yu9yi
u/rf9fyb63mcW8fjWut5zUhQ7LFSAOj0To7k3WT1v+v5D6/nw9FWLVV6AkCb
5b5stn2L+t/1/Jvr+YBbR7QFt57xaSPCjh7jA+qRv7cy6pr63/X8m+t5iFvH
Q1rrqfux5/XigXxAv1mXv+lSov53Pf/h9ew8J3i/QxEPUL3nvsUlDTT/ruc/
vJ4OkQkjHNbyAJ1wvPPtn901/67nP7yeM1ttvbTamgeoQiL+lu2h+Xc9/+H1
jIVbL7IEBYBe23DOM2y25t/1/IfW8wa3nkXDTbyubyoA9GDo/kqrOM0/9vz+
p89Hf5o/aXnp/9fnk7qeBXWhRoMLAO0sGfegW5KGul8X2j4o0KGoEtA364v2
+2/Ip+7j0b5O+3to/3+/1Us+ufZVIaCzbXx+xrqrqH/eWrfXjpeLRIDuHL1n
ScFnJXUdsqvmdFo1owDQ7fG6+4p2a4gibU2n65sqAK28vLs2tUxE/Trt36V9
/7R/l7Y+O2pGRhcPlAHa+KlwdHnWI+rXaetD+zrt+6F9Hmhf72w8sJXD2kpA
nWZVpRcoXpMPHdOvKz1EgG57kmCwq5mKOOyt6O3+pRDQO1vuuM/oqyIDXfXe
pY8pAPRB2mWbHYc01D9P+/tpfw/t+/xpEy9zal8B6P35y/olTJGQ7Dqfk0NG
VQA69NqRBBvfInKzlaXqqEM5oIMd7JyEb6Tkpufokb5+zNc5f9ibrpt/TEp2
95wUVH9mGaArp5pcPZFSRlZLTKuC15QBmvo8cJPl/DJy9nu7vU7nSgHtOylu
RkFdOdH1Om13PasU0A5fLj13yC8n9YrTLlg0KQXUgHd78VDDSiLcFOx3vGMp
oCVhX394v60g1kt7irctlQIqmls2+dOnSlKbf+v08Y1SQD9eiw4ZIKokU7jn
6ilaz9cDLW70zJGUADq9pJ7NjRsyMoB7PkSncs+JuReTNGHNSwCd5hfX1NFd
Tiwa9F50oUUxoOWJibs7aOSkR/+hbQJ6FwNaFlGQ1lUoJ1E69W2fukoAvXRI
7pk8R0EG3OxzMTZIAujGmDHGUyYoyKYhIxzSNxYBmrL25MN6AgV5Nd+kW0Vy
EaCdPBqNVT5SkEElxPy6UAwo+dzbY72zkqy69mTYo/diQP2nSF862CiJd/Kl
12scxYCWud7Mrt2tJFfzfH0ve4oB9XCulphvUBIH0x7urw6LAJ3pXF7zulRJ
PoYOb1x1QQRo5J3ls5YJlGSD/7Nbh5uLAM15PGqbh7WKiMyUleMNywF9W5qb
cHFAKTmo2pjs7V4GaNOA5vMeFZWREs+tIXF7mc8B52n9+bOduleQFlXp9WOr
pIB+vz/Hv3HfShK7IehYwHQpoOsmx57ebSQjHXKVdrNvlwAqNg46eSNfRvKD
Dbv0floM6JdVhvuaLZETR+451lHreXZ4J9dzPywlgA6823Uaf4WCCKXKRbPC
igD1P6zwaCFTELdRId4JmWJAO9o7Dnk6QkkOdqr95momBnTpsWUtc44oibjm
dZ3TJhGgum03PJypUZIt65u9Xfq1EFB+7KzrzxyYefLda3LrZYWA1sUqp7xf
qiI3BMET3KzLAJ2it/vYjtblpMBq+dbEqFJA83t19A0cX0Fe9lzHu1skBVT1
ekpesn8lsbAI8m4zWgroi6H+j/T7yIjAeMni8kMl8B/fBG9LUsjISU+LUY3P
FQMq3J6eErZRTpqYrG0Y/0oCqF3ze1nxhgrSj3uO7af1PDuxwKe5gU8RoFZd
KnL0axSk7Ki7IjyV+bxyvv4hSm7oqySloR7Kb03EgHp+ykzfnKYkix7eJQeX
iAC9GhIc8uaTkhwPNDQZIS8E1G9nknLkYBUJCZMM6B1cCKjriZeLN0WrSE+T
EPUOmRBQu0O7NaE3VCTgWKUmZnopoJIH9U+7RVeQQb78DF6OFFBhN8d6LVdU
kjLfLc5XBkgBPT/T0Gmml4wEGBZPHxhRAmi/SaN3zNeRE+lOvl72tmJAy0eG
e95KlJPxNVfF9tckgHo/0zPu2lVB5A6KWVbviwA1GuQ1dVSCgkzjnmOnaT3P
Tr1taTRwlxjQEd/7T+87XUmSIpQXz1aJAI3K8dnrelVJ+onDLd8EigCV+S57
GaarInqpfTwNCgoB7fV6RPvMESoS9fzA4GHjCgHVCdwTa7pBRdxnQlkuTwjo
sPHPq5wyVWT6toRLP4OEgLZ+4dXoVo2KWO2XdXp6QQqo263qDqMTK4ls7O67
A7pLAbUe1n9FwhwZaeBtE7HQpwTQtVdmTTJrx6zniadXZ4cx68lZ1KX7+KoM
OUkuMn14PV4C6M2ES8LEvgqyTrFIZc4vAlTRPLPe9jQFMXj7UJ3ZuQhQacbV
9AWGSuLEPcc6aT3PNg1xDR9bJAI0/1rjyx8zlUQ5Y+fDAaNEgI4Je/69Ul9F
9uq/3Ps6sxDQOY3vudmOVZGgdtcXjCWFgL54MWTTqR0qYh94VPk9SwjorfCg
2zq5KjI+QyUeNE4IaN8Ac0PBNxW5X3KBt7pcAGjShy0/z/ZSE/u9ixzSjKSA
jlCaNzsfJyPHLV5YrulTAij01z1y3VZOZhqsPvLOuxjQjAsusW2y5ORUv5hP
3aMlgKq2qirqj1CQmVkz2uvfKQL0/NVBjR/cUBDrYb12P2lSBGifI7ve8Dsp
yXVBcYh4uhjQL7MyQlyi6PsD69+/sl7jKAL0TdY+qV9bFXkvnFtvV3ohoMLX
kYEHJ6nIqHGbRBN7FQJ6Z9WnKJuDzHV9qLxp7ytCQL8lpbk8fMHMhyV3Xy9z
EQIa0Hvm+nf11WRW46G2pwsEgG47XhJj21dN+rkNve8eJgB0kVlF3LsgNcnh
8kSOVq6w4nIDWs7lB2cuHzhr5QRaHqDd969w9/UrWvf3IfU8WwRfFAFq/PJg
o4EC+v7AhkfrTg1PKATU5+3noNoZKjJnctD2Ke2ZzyvnypBKv3NJKtI7cIX3
pBNCQE8KDNauEaiI5c/Ox8/YCQFdpQydVl9fTYY6JVQ9yRYAuqBbg+rzA9RE
nTd3o+s0AaBKh/3OmllqcnuZqzLtOx9Q53Ld9212qak5jZbHaLmLlq88ufyE
lnM5ipaXaLnoFbcvgEZz+wMbnxzbO7FpIaDu7d2MLFNV5NHB8fdW7xECajOn
8TKnEhWZJOsxRmwuBLSZ24HEVq3UJJE3zVJ9TQCooa3+VGsXNXHo+KLfoHEC
QJe7yydXzleTO/XXGc5+zwfUXlnvdOJ+Nekyas7eFvv4gPotOCWJv62m5iIB
l4cEv5mLDnB56MD/UC6i7V8dODdvVvJaIaDDmjQxUcuY+dDmY1njVkJAg/Q9
+nU0UZPklv1eNk4VAPpV2uxKsruaVLi9K7BzFQCatTxaJlqsJqOtV2wzL+cD
2rKwwrZTopqkB8wOWrWRD+jsDvV1rmWqSVR2p4XvbfmArnr+aWV5ufofy0Xh
XB4K/81cNJPLQ6gbl4usuTxkrZWLaPtXhneOhPSpJwRU2OtNz66d1WR5Qc6X
zvHM54+z8oXll9aj1WTDd6/ZFo4CQFt3+ln4bDnzeVZlBhby+IAe+HFr05Fj
amIWZSaUR/EBXbe/leeLbDXZvDCynY4FH9AFV97GJCvUpODhurzCfB6gR3Z/
rvRsqiFTuDw05TdzkSOXhxy1clFTLg81/c1cNILLQyN+Mxed4PYB0TpuP3D6
/cxT/bYIAB2gt8oqzldNtu5f8NGouwDQqsfGDrdj1CSmefW2Hbl8QI/UJGaY
nFITnRkLfoxdwAf0nv3Qu5VP1KT/yahrzdvxAXVRrqiZ+kZNwm+3cIrJ5gHq
lWF/4mpzDYmb0StwRgQP0IzErFwzG80f56I9XB7a85u5yI7LQ3ZauWgcl4dQ
x1/kItr+aphcEqNjIgD02pjIdyfj1CSu/YX2Lrf5gPqnJx/fc1ZNNv5wEFyf
zgf00psvvl9eqEnw8wVeJs34gO7ZPrK4TZWatAzNL+h8iweoS/Cb1h1bach3
3jPxzlAeoHl9ZmUN7qMhkuAfLr068wAlj7xjkr00/3Uuuvs3c1EIl4fQ7b/I
RbT9f5Xv/pYf0vmAHg9VTmtyUU2OTxo/q4Mf89+c0hkXDPR4auLxPVHSRYcP
6PciA6dnn5g/P3zP6fvneYD2TDQYsK6thtSrFd+/HcQDtJ3aJH1SX+bzaTI9
pLAND9B2wk5mK8dqyIGjRevkzwsAPRF1+a5eKPPnu0dfKo1nrnfOsJVjiq2C
VWQul4fmauUiWy4P2Wrlou5cHur+X+aiO1weQp24XETb//9xMD0jxoMPqHkB
/62xSE1qP3qGWVfzAJX2Xq+7pk5N1hp2vhx0ggfoiU8bDCtNNWTvz3utZH48
QKMu16xd4qQhjdPvd4rT5wGaErypeLyvhkzXnf2hSVYBoBHLN0SdWqD5y37m
MG4/s9By1emFEeWAbrW/cGLZeClZ0j04Iv5lGaDVp7bcSMsqJaG75jT51LUM
0IvV/E1bOpcTr7B2t9w2lgL6teSgReygCmL0VD7tR60U0A6BOgNP9agkTgv0
WphFSgH1H6pc1/5jJXX/8MHEsLSr9sWAxls87BXMk5OtBY2ixsZJAH303E+U
5qIgnn1qX3cqKQK00Zley0alKIiZRWAD3rAiQB3VAa6DfyjIBt2GxXXnxYBu
1t+zaPFYJWkZdTRav6sY0DyDxNPZiUrqPrDIop39rd1lgEausp7YZWQZOV3b
bcjWt6WAzljp3MstrpxUDx8oGz6pFNCdDRJrbLdWkJH1826eypcC+tHrZvfz
cyvJhz1tf7j6SAHN631gWqiVjIwK+yBLhBJAE09dXvf0uewv+28vcf/NtGHb
YHcmZ3K6rZx0eMUsBWk1fVak/HQRoB0HKEIXZjF5Pj/xQbgBk+c5ZxdsGbvb
VEmOGAYdubFGDGiY7tXUw3OVxG1u04zJtSJAzZborfO4pCQhh9+fkEWIAJUU
fD44uEZJVP0miZV1hYC2WNn2pRGTP4dd7S/sMrYM0PLAqU2OPC0jidkBb1vf
KAX0XG7+i0eycpJT/j7ugHUpoO0XbL6qX1hBws7Y/3x9WgrorRM/XpmlVZI3
t68fbWkrBRSWhS0eFSAj3nlD+lyKKQF0Y5dGPZK/ykjb3XvPbsgoBlQq9Hne
bb38L/tvUdz+2/D3qy/PCy8C9M6ruR5+FQoy8cKT2AKJGNCT/rvNLvVTklGe
1w+7jxcDKnL6HH94nZKU5141iHsuArR6QFmD1FwlaZcXcKPvGBGgfR/0vjyj
qYo8frktvY5fCGh4ju+ZscOZnHkwyn3FzEJAnzWseKJcpSIFg27POrKmFFBD
O+/IBh4V5CPUHzSojvn8cYpa9HNsbllJvh97vn9zjBTQ7UvnCGvklWTDOOdO
cXpSQHcmSAOv7paReuJmN4cPLgF046HGjh27y0ndON0dC5cWA9rMoyIo7Kyc
vJnm9bTbTQmgOz5mjhxvriBB3L5bkNb+GxgZr9Y9KwY0a/2UpknjlcTH4nxW
GnPdovsDQh8vYq7f1Im6vpuOiwDN2p34qrxYSU6OPJsV3F0E6KcltifmdmSe
g3QV4z9eZJ6DOGWbWmUtmaAiLSZMuyt3YT6vnN8f9ukWul1FinPHzXnPFwLa
KHpBZgaoiMncWs2gp1JAh1cn7++5uJJMTNyl+9RXCmhwheSrtaWMJKjvR7g/
LQG0y7jdktRs5vOpfyNuUl0xoLOz69YM9pET2Z2m9T85FQPqeT5l//yXcqKq
p+/YOlYC6KXGui7zhinIQJnXu5PCIkBvbYmc2TpV8Zf9t53c/tslhxgdabUI
UOv3qXfbX1GS7RHtbOZEigB9ljp/Z121klTln/NZ+rMQUJNb683H26lI2dAE
p5fbCgFd6xYjXzWXyY3LQzyGmhUC+urkViv+EWbdQhc0i7kmBDS/xHvJpTwV
eSjX6I4YLwS0kST90DQmf45wtypPtJYC2r34oeWtYBnZY7Rqc+maEkCvlE64
a/5FRlaf+ZT6/kYxoMMOaT7+jGHW7VymbYfvzLpxyqH4u/ln5ut6oc+veTFf
59zxylwzIlhBAgyePHp/qgjQGSb9Ov5g5mfeSJstNXpFgD6tO98ruaOS7OD2
3f4jt//2YpPc28JLBGiE2djSt3oqktko4sMsQSGg855+U7RnruupDref7Z9d
COine+eKQ1eqSMttA4fGfhMCuvHzwjPW55nnoPnXbL7sZ56DOKd1N0hJlqhI
7t3O1+46CAH1d7+W2UZPTUIb97Y9wBMAOvH2lOc5Dszze9syW7FjCaCZbYZU
dLCRE8cunb1bRBQDejm7x7oZZ+RkvYmuW0WmBNCJPSodtnVQkLerSbeWbSWA
/hx8dIw8VkG+O71qo7OsCFDVqefHr5UqyLJNGcsNmLmJmq6tXtypv5JY2VU/
2+8tBjRzTH6B2XolGcLtu6GDuf03N/7YnoMymOdwTt/aE1dzJqrI8pFuMS7D
CgFd3P3w0qHMde0p6vf9QqEQUMvhDdbOuaci/r5jDWYsY9aLc96AMXbRGhU5
M8z7VLc2QkBtP2Zl3zJWE9dzMY8f3xAAOib1WevJQ5nna//tJe2DBIAWur74
uJPJn/e53IMmcPlnC5d7tmjln5Fc7kEbc/mnE5d7Omnln/Vc7kG3/CL/bHcv
/L78KHO9c14PdY7/KlX+Zf8N+zlVHnp3Czowc4Czplv/ZV+PMutZf4zwMXM9
ozcXd4jdyVzXr2cW/bjhKwR0ch/Lr251KhJnf7tZzCcBoFNCx24f3U1NVne3
LH6XKABUoLzoXOylJtkdL+uXuwkArVheOqrrYjWxj/Q52/MDH9CZNV1lI/er
iRvmIa1cZMjlIbQTl4s2cnkIncPlosNcHjqslYtcuTzk+l/mokhu3y1Sa/+t
ZptJz7y9QkDb5gzclFSsIrwNi4b+YK5ndPJd++LapmqStLq5xSMB83zO6Vxj
9z3fXk0u53kdabJaAGjU2ruWPpPUpNeD3luP9hAACpM09mnRajI/qW29YAEf
0F5uw15/TVKTd57KdNtNfEA/6S/vH5bJrDOXh9C7XC7y5/KQv1YuGsnloZG/
yEU1XC4y5vIQ6sjlolwuD+X+Ihc953LRC27f7YXW/lt174SO9kZCQI33H7h7
qJ2aXDQn3XVvCgDdt+1UnQtzXZfdDuzfeoYA0MTcNzk3QtQk3Lv9htEtBID6
pZ9NMN+sJsNUb/ruussHtHi+NDvpjJqIOqg/XV/IB/Tp/l5i3ydqMvqNxjrF
gg/ohAHv5gQp1OQel4fuaeWi8VweGv+LXJRNyUWfuVz0nstD77VyUXMuDzXX
ykUSLg9JtHKRdh8P99/2lBwbZ5MgAHRI4ZiFyd5qIu6vJ2k1XADoNvMdDVsy
17WHzyOLj1XMczjndlnbRdv2qUnPr9Ehl0/wAW1SKc1wuqomfb7tn9l/Ah9Q
59VvsuwK1MRsTMfM6c35gLrmdRq574OaPPa787J1Dg/Q4oym9iuba8hFLg+h
PblctI3LQ9v+Zi5ax+WiTC4PZWrlonZcHkJf/iIXXef23a5r7b/pmQ+BBlYC
QFek9M/zi1GTFrmXd25jrmc08/j0k0rmuu7Wdu/VZ5v5gH4Y5BebDWpSO9jH
6PwQPqAD27dV1i9Wk/yy3B3Gn3iArrc5F3fvKzO3B9/s+C6DB2hA23BR87Ya
MtO4Ltp0Pg/QRml2xk37aP6SiyK5XARcHkJDuVw0hctDU34zF03DPKSVix5x
eeiRVi6ax+WheVq5SLsvivtv8oI970zv8AEd0+2bpfNZNRF4dXYvYq5n1Hxl
jP0I5rq+0vCsWQdLPqCFw3oOeipXkyYdW2dkF/MAbbD9nWFJfQ2xvKjY/iCe
B2g9dcCLg500ZI6H8a46fx6gZm8C4vWcNCRvb+yUSW15gAYamK3wHKv5y35m
Ibef+bu5qPsvclEal4fStHKRG5eH3LRy0SYuD23SykUJ3L5bgtb+W5cDQwaV
+fEBfbvsecYt5rqOPOZ6ai1zPaMTD/EvbWSu6yNJA53nP+IBetFrmrymmYbM
z9H02xnLA7Tf5PtNTLpriI5uwg6+Cw9Q/565AxoM1RCj737be9XjARqwdsrr
xxM0ZPDPDgWGUysBbf32XWMLM95ferMFv+jT9uXOQdFg7jz0T/uf07j9wWla
+4S03ux78sHZenUBoOO3z+x/aKOG6KY+OwiXKwA9NDS4z3ReIbUvOvWyw6I2
kgpA09bq2GVnC6nrQ+u50XpZtB4RrfdC62nQegW0c3DauS3tnJF2LkY7x6Gd
O9D2IWn9VVo/kNZno/WvaH0hWr+F1seg9Qdo592081naeSLt/It2XkM7X6D1
eGm9X1rfktYPpPXZaP0rWl+I1m+h9TFo/QHaeTftfJZ2nkg7/6Kd19D6z7S+
NK2/SutbUvuBlD4brX/1p/1hWh+D1h+gnXfTzmdp54m08y9ab5zWM6f1gWn9
VVrfktYPpPXZaP0rWl+I1m+h9TFo/QHaeTftfJZ2nkjr29P6+bR+Na0PTOuv
0vqWtH4grc9G61/R+kK0fgutj0HrD9DOu2nns3/6PsKfvu/wp/32P+1p/2nf
+E97s3/a//zjHuMf9vH+tFf2p/2oP+35/Glf5U97F3/aH6DlTNp7NH+aP2l9
9T/Nn7T+Kq1vSesH0vpstP4VrS9E67fQ+hi0/El7/4j2fsr/dC6l9YFp/VVa
35LWD6T12Wj9K1pfiNZvoeVP2ntbf5pLae9T0Pr/tL46rV9N6wPT+qu0viWt
H0jrs9H6V7S+EC1/0vIq7f0p2vs+tPdT/jSX0vrqtH41rQ9M66/S+pa0fiCt
z0brX9He+6Pl1X8ql9LeT/nTXErrq9P61bQ+MK2/Sutb0vqBtD4bLX/S3q+k
5VLa+2i096do7/vQ3k+h9gYp/X9aX53Wr6b1gWn9VVrfktYPpOU3Wk6jvcdH
y120fEXLUbT3UGjvTdB6/rReOq1HTev90nqqtH1RSfOp0acdygE1uumflfVG
SiInqqe7ji0DtMkjflLA0zIysXOb+RfXlMJ/jPygKHWvIN7GU8I9nkoBLTqz
drvJ4kpyeOFIXrK1FNCupid2XQyWUXsCcyxlviHuEkD5K8Jdl7Pn2joG88LC
iwD9FJVy26dCQd7Pnqysf1YMqGr5oetHxitJkykuBaXVIkC7xQflml5RkrJ1
6hXdvESAGq3jj2TPZWjnCJ4Hb43udqMU0I5xC06dkZUT77njp3vWMT8v5+rE
2LLqbpXkwbIN8TxfKaDPusVPaW8pIyOHe5a9WVMC6FFfkxEmX2R/6TGacef1
KZdexPElYkC/JBs2uNhPSVakGdmf6yoG1OG4+ZrwRCV5cH32iHmRIkD1d31b
9bVaSXZfi5o9R1AI6JaQxnbseVNUkwX9hw1j5jbn2VmbO7DnI52XG+/ZFSMF
tJPeTB+1vJJIinwG+T0tAfTsl6ChSdkyYhbdsM3XG8WARujWPvkSI//LObiY
OwdXF124ufm4CNBeY1easue2C4MHfF72sxDQrh6jx42zY77PZBuTg7OZ75Pz
+NT+hD0Xm9NWdf5ioRDQDN1lvdlznNHH2tyfVlcMaMyhx1OdfeSkZEn9Vl2+
SwD9ULR4TKfPcpLCnROnaPXo8v1Ptnm1rRBQy477VrHnm/6zDtvEfRMC2nRL
5kD2PO57bv1j7LkRGnel6ftVGhWpSvy57KaXBNDIRqN9hgcrqOekdyP7prDn
eWjXjsFh7LneJbeOTSzbCAEdXOOZwJ5D0c77Jjcv/sKeS6F28ns/Jw1Vk4Hc
/sJArX0GWv+W1hel9RtpfTxaf4zWw6H1Rmg9B9q5PO0cmXbuqd1rEv3i/G4e
N6fm/ea8+sDNKVTJzaum3JxCLbh5Vc7NKbQVN69axEyNY3szqFX9udPY/oxF
YMcDbM8D/VbSbBPb91D1Uj1iewloyGbbQWw/ISmysHNDK+Y+x5lf2uEke56+
2niQQ/s7fEBTNbb67Pnvx3zXQPacEk29YnmcPa+kzasobk5Fac2rh9yceqg1
r/Zyc2qv1ry6uC958//uq3Ae573OZ/squVE1gUbDBYDWJEXltWDytiLau+l2
AR9Qn43tl7B9gCUfryez59aoeoKmOXt+Hf1aj8+es6JF/b4lseetGm5OaX5z
Xq3k5hSazM2r0oHXl7E9DzRm77wxbN/D9fSE9s838wH1MNKdzPYTknnbl7Hn
6Kjv2Tam7Hl69WXxXPbcFz0vjClgz3+151U3bl5N5ObURK151dForRfbe0DD
Clxfsf2H6rsF79hzerS+U1ptcX0NmbhpbhB7roxKB8lr23XXUOfVhOLwC+y5
Pjpko+kD9nxfHu16jj2HRm8OTbJlz6OJY8Zh9hwatRp59jl7Hv27v8cJz6Np
+36093Ro59S033NCO3em/X6ef+rceXHqQ1GJYwmgui12gomNnETHn58xO6Ic
0AY7Xk7ZPF5Kunkt2GMUUQxo3s9HHaedkZOz9muGjI6TANony7DfWRcFGd0w
PD3qZRmgR+zS36iySolE0LT3yrelgJ5UL704Pa6cTD0WeUWRKQFUXH0pYnMH
BbFb72fRoaQI0IeO9Zt4pSjIkXr5DxcYFAF6q3HLBXtMlaRPZCuL8q5lgA79
MiXwfOdy8gh62fafVArouwGyFx5bK0ijlLK2z09LAd1iP3uxdVol+TjFaXKr
thJA3847NKcyVkGy9TscfzWsCFD/hTMPD/mhICXpGX2vrREDKiub++nIXCU5
0c353LrnIkDDBT3vsT29haObFTlvLAW0OqFF7f5BFcTFMnPl4XwpoAFHswff
m1tJxjReKW5iKwW001OdQb4BMnI+cM0mMrgE0AGJDWaYd5cTT9PWBvWWFQHa
qKf32qulCtJt+TjDr+fFgDo0WRm2ZKySKLubJUysFQF6KeNK/MhLStJSMsbY
YYwI0KTSivXBTVWkjcHSiKqLhYAuqj5ou3SCijzs8jWztlYKaOL9ZiSjRyV5
m/mg6RAfKaBVmbe6LbWSkb1WgV9SY0oAfR+6bcXprzLypPWse3OXFgMqOabs
uOisnASPMthlGCsB1GxwblHoMAVpZNwh0JC5T6AGTe2rO/Zn8qphvL8ec59A
J+1Wu+awPd56AfaVESJAPx6d6jukRknebH4Y/JVfCOjZkjivccz94mWw+SuZ
SyGg5Q5G+9len0Fzh/3R14SAunZwPcP20AxDzIQdIqWA5ptWve70kXl+MZa8
OgAlgOYpruq/eC4jDe4YT1iXUQxoo9zQY1br5SRw4qgTXW5KAB03b9ZAX3MF
Gbfu9JcTwiJA3VooN7dJVZBTq9JOVusVAXqwj0s627efeu7SEravjK6KHSFl
e8uj+py0YPu16GaLCz1bO6iI/uWVB5fPLATU8QkxU61i1iFwR+E7vhDQpprr
9S6Aiph2W3Ns+HghoA+/7Mtie3e+ppU/9vMEgF78tq6M7YnR3mt7WvPpOttH
R9+Ht1nE9tLTufmC2nJzRvt5B/vJK7nnkJVazyPjW7qsZvvWqOWqHufY3rU9
N1/QB9ycOcrNl6Nac4b2vtJc7vkBvcA9R+hUizawfW70hdqlz/A6FWk4U3w/
RyAAtI33IKuX9mqSw80X1I+bM6XcfCn9xZxZyM2ZU9xzyCmt5xHa88VwjdnB
6E8CQIf8dLrP9szXTeC3Z/vQ6I0xkwPZXnSJ2MuR7e+iNlZr7rA9Xu05Y8/N
GTU3X9Rac8aAmy8GWnOmLTdf2mrNGdr7MtrPNYO45xqx7oBoth+PXjyaEMz2
5Gem9GzF9rnR81byELbX3Uwe8WLnXT6gLmv3vmN7yPV8VvVk+7LoxXdCMdub
3cPNF3TiH86ZM9ycecXNF7TsF3OG9t4K7XnNftT+3DI3AaD5On6z2fcCBgmb
pM5gci2aZBFdy/bYa1sFJ7N9a7Tl3Cvf2d51qf7G1Ww/GE37nDCD7Qnf3Tew
7m0GD9DI1vflbK/Vk5svnlpzphk3X5r9Ys404eZMB26+oA+4OePHzRc/rTlD
e/76nJu4mX3/Ac1J6lHNvgdRZxERw/b1Uevht0exvX2/kG1fT1jwAX0wv/Mq
tmd+JTwkle1Do1ezWw9je9FnFs8IYvu7aMrd8C5sj9dnYW8vtm+Kau4UxLC9
U1rOTOnZfoKfXzmgHhdSW8w7JiVOzvofzTaXAXr02e0nOyaXkc/FK+pSnpQC
+mbr09Jt2eVkic2BCV/MSwHduHBHmb28gmyfnR/2aYsU0OMOky714VUSvebz
PI7XkwKavOdD34rDsr/MbdxnU6rL7pnOlAAa33mpWx8/BfHrHVYtS2HmF6e+
QizqmaMg4bNO6vh/FAP6NanxpFxrJbEwT9tU6S0GNL/9ul41cUrS0N5l4qjL
IkCvBKhHEb6SnPQz/bEhn8mRnCGVc1QfbpWTK75HJ3tZlgKa0qBNJ1NpBcmc
dnj8yB1SQHscWt7dMr+SSFpvbTS8oRTQp5s05lbxMlJ1anrIVcMSQEvCq35O
cpMTI+5+Y6S1zzZi8uSt5TViQBcUN/cL6MHkPVlmX+OxYkAPnfqQlBurJI93
T15nd1UE6IXY3nGuPCWRVfUZaGghAjT6xuPpRmYqYpM0/uGdxEJA32VEBgyb
oSJr5kdPO7RbCqihVfwIs6eV5HWE1whZYymgjUstq+bvl5HEs6N6fWtTAuip
pQ3Px7jISfLJkwFyu2JAz5+sFVcy/3+173e4//Z8T8Y34+siQDXmL765FzA5
/JSx9FY3EaCxKWumDumkIk+tWj13OMLc3zl768h8tk1XEYvD69ukdigE9LK7
7vqWSSrS3WTYeWJaAqjtj9y8lCFycsB3qHu4YzGgl470XpL6Wk5WtX2QuSpY
AuiEhrfTdzKfQ9r7rSLfqNAzRwsBvXqwy0J+kIqc2z4ltLpjIaDFCZ0zFx9V
kQzjaTlrU4SATjt3OrSWryLhOnttl86SANpqyIF3WT4K8sS30iuU+dyjEpmZ
/xLm80+7f3kXe31NOykEtPfkV/PDmb9f7+RLnyv2QkAX3y9Zu42Z883LUyM+
VokBrfdpmsFP5jqi3RcUvQ1tb+UIADU7NmLdiAFqar9Cuw+A/VXa+fVr7pz1
tdZ5azR3Lhj9X/4+sY1c3wL1/cXvDdPuW576m783TMOdb6Eq7pxrC3df2aJ1
f6Gd46i4+aj6zTm5iJuPi7TmZBduPqIvKXPyMjcnlzwqGj67iwjQzm9roxTM
PDHwsDh8mvkco7uWdG0uZz5vRjyb4wXM5wzteiS0eQz7+Yk89InHfn44H/d3
mD6AWZ/JDnKlA/Pzo+kDT11az6yDrcxiWOwPPqCO0Toet3eqyfs59W4FJ/MB
XZuXMsH6mvq35+fBX8xPBTc3FVrzsxc3N3tpzc/Vq8Y+kD4SADpzeWVJtrOa
rLo9zc5iugBQ6HnMzoz5uT6Wx++b+pMPaE11j6NBzM+VOvpuix7H+YDe7/P4
QeFVNTndoC7WfiQfUGeTyO8vCtV/PD+fcHPzyW/OzyTLW5mOOgJAne1e/GzI
fJ9xy5+Mfct8f+iyB5V2m5nv87zVCx8Z8/2hwwaU621ivs9jg+eX5lXzADXR
948mdWrq/Ezn5iYq+cX8tOh8tUnCKD6gBvbtOg9l/t2dNcM8ltTwAE0/Wln3
4yvzfHFw+M7PJ3iATnsR//2MqeYv89OWm5/63NzU15qfRjd+TNiRwgNUPN30
XTjz97wt6ycJ9+cBempxSz3ipCFKbm4qteZnRc7g7g2a8QB1OxQ3pquvhjzi
5umjX8xV7FlNFs43MGHmAsprEuZhx8yHkE/3vzRmch7autOBfsDkPf9Wc7Oi
mNyDRoV//t74djl1Pk9IWPamgpkvaPMN0ka9mDlTFNhcv4y53tBlNvusA5nr
rr9+25EHmByJJkcW+55m8uTLqtYdXJhchfJ+HDhow+SrXnudLfcy+QPdHf22
f3cmh2j3cMy4+0KV6WwHX2auoXXuVpMeM/OtWUf9mW2Y6xw1DDh36DFzvV9c
du59W+Y6QVfNnbvRg7le3gjPyN4zuRY1nfvixlAm30YEO6x0YXIeqvP2eAt7
Ju/1yXxrUcrkIfSa09UBS5lctNIirP5AJmeg5Gj3t6eZvEHrt6hj29pUMPMX
PdTmm5ydw567Rr63ZeYRmpbQ0NeNmUuLVlmcuslcz2iE/ekv7HV9pfer7DTm
+kGV1fuAvY5yGuq1qmJyOZrX2cG7P5PPWyw+FDGUyaloWkt5fG8mr2YM8bep
YfIceu+279RYJtcFP3xdFsrkJLRd+deBZ5m89Ginwm4xk1fQ4TN3ds1hcot2
z8Sduy9HhhcvH8ncV1Bv74n32PvLUg9TCwNmzqLPLi98w85bxe5dBfbMnEIX
6255xs6rzLxZtz4ycwHd/emw0RJmPlyDO8fY6xaNuVS1n71+J6T67DnGPIeg
rU1GJcuY55HUmGZrLzK5HO3P6xE/lcnnAdlmrSqY/IraTBtWJWdybGiHBgFR
TC5E3zboYrabub62D9v4ai5zPaDTx/L7LGWui3PvnzypYnIVGv76+UI2Xw3m
cslgrXwyw9tBMou5v6LmZ8ZnsPfZ23kuzuz9Bh2ctvwYe99Z2eXZrtPMvEa/
5yQ8ZOe23unyyex8RM1tfh5m5+SatXv02PmFftp18jg7x64czNNj59H/sf0e
di7RehHaOQr7q1O4uTNFa/7QegW094ZKZgyexOYJ1MxS1JPNFbT5I+bmjlhr
/tCeO2jv0UTmvnNn8wra8+dTRza3NFHvWs7e19EWr011cpj7+z81f7T32fA9
cdp7KL3yjI+y+Qnd91Kwkc1RWVUG+V2ZnIEq/S2msHlD7d88jr1/o+7m5iaN
mPv4//T8ofUKaDm5ZIn6GJv/0FvvHr1kc+DUe/ud2ZyE3p/aNYvNS1OXb2/A
5g/UMbfpODaHTG8lkMQzOQDluw+1Y/PA/+v5s5qbP7RehHb/TcE9F2xuu68l
m3fRcv92AWzujQ6ufWLF/Jzo0cCIYjYfztu11ojNW+jh6KMWbO5a+PSeMZt7
0EUD37X4yeQfE4npEDavoCXRrb6wuYX2+15o8yeKmzvoN27+6HNzR/8X86eG
mz9XublzVWv+0PbfaM9HKdGHjrHPA2jF6IYz2OcC5UaXIDY3oyOsHujnM+uT
pmpyl82jaJPHh7eyudTls0M4mwtR8Y+dTc8y62Nx8VsOm+dQu8sRrdhcV3L/
dns2t6H3vzzxYfPboYTqhmP8ygE1C1gCy49Jqev8vwBuI5/6
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->{{0, 1}, {0, 1}, {0., 1.4142135118654668`}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.8485099531821117`*^9},
CellLabel->"Out[31]=",ExpressionUUID->"ad02ee10-ab8c-41f3-adda-459453adfeaf"],
Cell[BoxData[
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "2"}], "2"],
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]", "y"], " ",
RowBox[{"Sinh", "[",
SqrtBox[
RowBox[{"4", "-",
SuperscriptBox["y", "2"]}]], "]"}]}],
RowBox[{"\[DifferentialD]", "y"}]}]}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.848509963505844*^9},
CellLabel->"Out[32]=",ExpressionUUID->"221c4228-71cf-4fe0-99de-6f98a8ffd253"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJy1nXm8jtX6/7dShqgOoZC5VEqdjkrDOWsXCc0aNEsyNEiF0hx1TielQero
NJySskOdUjTY3GxzSB5JbKGHNpHsvWVowO+87Ov9eV7rejyv71+//nle+9Oy
7nV/1rWuYd3rulbTm/p16blfXl5e66p5efv/77fpdxd+tGfPnoTfBs9sue3K
6cNDrwEfvDyp7+/Cf66Rl5y8bWQYe1DtR/sWbxd+1NCrh9R75Y3w86iBvVp0
Khee6n1Q0W+HvxN67u1nk/Cmlbt8vKj3e9Y+LTx/edH88c99ZHhKeOXZ/5xb
v9rnIc/+A/9n9Xnbx3aZTvsAfka/1q3b15xD/8L/unj//deO/5LxCF+5pH/7
HX2+ZvzCZ1zcquynY4p5X+Hnn7dlaataafjJ4MuOOr5+jQ38Lbxi1KX6G17h
k7/5hU94BodPeNb8GJ/wDB7zmRYOn/AM/oTxCc/gMZ8pjRc+4Rl8hfEJz+Dw
Cc/gnY1PeAbvZHzCM7jjU3jBxeVfjey8TTzDH3zSDhw++VtyHclnuXD4hGfw
mM+0cCefwuETnsFjPlMaVyyf4kl8wjM4fMIzOHzCMzh8wrP4iPnMrPtuhVuO
v+IP8QxP8Cn5Rh8Yn/x78Fg+y4XDJzyDPxnxmRZ+ZiyfwuETnsFjPlN6/sxI
PsWf1js8g3c2PuEZHD7hWXJkfMIzePOYT+FPvbWkqGz5fvnwLD1qfMIzOHzC
M3gsn+XC4ZO/+Y35TAt38ikcPuEZPOYzpeecH8mneBWf8AwOn/AM/q7xCc/g
zYxPeAZ/OuZT+MNXD7mmrE61/Fie0+Izlue0+IzlOe3We7lw+IzlOe31p3An
n8LhM5bntOMzpf5i+RTf4jOW57T4jOU5rfUey3Na8hnLczp5JOZT+LnFwzav
+eBQx3NKfMY8p2SPYp5Tzh6VC3f2XbjTn8KdfAqHz5jnlOMzpX8Xy6fmQXzG
PKfEZ8xzSnzGPKcknzHPKc+n8CPW9pyw85S6+bH/kZeHfMZ2NC8PPmN7kJcX
y2e58JWxfRfu9KdwJ5/C4TNvn/+VimeQWD4z8wOf8AwOn/AMDp/wDA6f8Azu
+BRe9c6WrW5+5kgvzwE+nTwH+HTyHJz/KXxmbN+FO/0p3MlnEvNX6uU5xHxK
nkMsnxm9Ap9OngN8OnkO8OnkOcCnk+dQPeZT+ClLLjr2qrHNvX4Wn04/B/xP
p5+D8z+FO/su3OnPJJa7UsdzWnzGPKcdn9LPIZbPjD2ET6efxafTz+Fw49Pp
54B8Ov3s+RQ+7soa3du1Os77G5JP528EFx8Jd/5nBo/texKvV+lP4U4+hcMn
PIPHfMrfcPKZ8ePg0/kb4tP5G6GK8en8DfHp/A3Pp/Bzzt14bsvTWzl5Lhef
zn8OLj4S3in2P4XDp/OfHZ/yn718CofPWJ7LHZ/yn518ZuIP+HT+s/h0/rP4
dP6z+HT+s+czF078FVz8LtzFR0lsH+R/Ch8b23fhzWL9KdzJp3D4hGfwmE/F
g9Kf8AzOenfxoPiEF3D4dPGgeHPxYBbPOXD2E8L5cfyexHZV8ZHwsbH/Kbx5
bN+FPx3rT+GPxPIpHD7hGTzmU/sbskfwDA6fbn9DfMIzOPy4/Y0snj3u9jey
eI79EcXvwgvi+Ei48z+FO/su3OlP4U4+hcOn/DPDq0Z8ar/Oyaf268Sn268T
D9JfDnf7dVk8e9zt1wmfecwjRxdP2hUu6Np+a8fhvyhOrzrt+xrDW/wamuxt
v0U47cGRT/v3Ng8l8v/pBxz+6QccebZ+bR0Uqx/6B6cf+genH/oH7xD5aSUm
F0Xqn+eCD3XvBY6c8Fxw5ITngh8R2QX8sqIQx5saj+TTjUfy6cYj+XTjkXy6
8bj1XgQ/IY4vivUbx2slwh/e93yF9jYeN1+yj26+tF7cfIXTovVSlPD8eF0X
ib94XRcLj+OgEuHwxvjBGaeTZ43TybPWtZNnt66LE57jxi98aKTniySPsZ9c
LLy9k2dwxs/f/OKH8F7gjN+td43frXenf0oS+nPyIzz2B4qEx/q2SOs79leL
hcf+f4lw5oXxgfNe/M0v78X7gufQh8LRd/y75vH6Fe7kUHhsr4uEx/alSPrS
6w3wqpF/XiKc94UHcN5XfBnOe6lfh8ODx7ET/P/msf4U/nSsN4Q/Esuz8A4x
D8Jjv6VI9qd65AcWCz8t8qtLhMMD/IC798rCeX+P83cOnPHr+xf+DPgxb/Uf
PWbUi8H1k/XdB3z2NQ2fyhtYHty8aL/dzWPW9w7wOdaPk3/1E+ux7cnAS95p
+vqzO4NbR1n7/+D07/RM1ncB2tN/bL/Khcf2qzy5asSlrQd3zfP6LWv/HJzx
OD2fOL9R7f374icOMJzx057xxHZtk/DYrm1Kznlu25XVkwO8PcrarwZn/M7+
Zu1j076/jTP2H9LC4zioJOlq44z9irTwOD4qSc628cfzlRYez1c6ueaFJV83
Ka2R7/yKrP1kcN7X+UtZ+8y0HxC9F35USni8v1Gs94r5SQmP9z2K9V4xP6kk
3/B4P6RY7xvzk0quMjzmJ5VctPHoagedXVv6jfd1+2/C4ce19/seag8P8Em8
EuOb1D7moUTtweN9jCLxAJ+0z4/kfLvawwN80h483vcoEj/wSXtw+AR/pmfv
Ns3/c4TsCPzAZ7zPUxQcnwk87XvfuCjEclWk/x/j4j/AWyzPKYeL/5Dv9APt
wR3/Ad6cPAt3/Ad4c/Is3PEf4NPJs3Anz2HG2Lx7j63RVPY9lrvMfjK4W+/y
8/0+M+0d/9qXjvGU5D2W2yLNT4xL/4jneL7SDpf+cTyXqD240z/hAuPZ6Wfh
Tv+EYcaz08/Cnf4R/04/C3f6ObwysOnDd/33aPlp8brP7FeDO3uk+KXA7WPT
3ukf7W+Dx/uBJX6+1D7GU9L38bookj6L8bTaX7VPe7TJ4bK/Whex/d0UYr2d
sc/MSxwXbwpPGe7sr+bF+RthuuHO/mq+nL8RRhru/I2s+CXW05n9c3DnLyle
G+v21Wkf+xUl2lfvH69HtXf6UO3BkQfau/lV+xhPyd+J1x3rvdzhabVn3cXr
vdzhm9Q+nscStR8W2Z2Mv8k8xuu9XLjzPzWP8XovF+78z6w4xX8XcP5zVhwX
2+HM/j+48+cVt/rvArQfEPuf2v8fGNtHtXf+htq79a72Tj+rPX4a8kN7Jw9q
H+Mp+fveH6N9jKfVnnmP9522O3yT2sfzXqL26AHJn7Vn3uP4ZbtwF39lxbO5
vnf49vG+1vYs+fE48WTsl2W+d4C7eFNxvf8OQnsXf+m7xsDYX1V7Fw+q/VWx
fVf7s2P/Su3PjvVJpv/YXqg9fj7yRnsnP2of4ynFu85fVXwZ42m1d/6V2sf4
JrWP5aRE7bEjyJvf50Hecn3fybEvlPO7T659J98e+ciBJ7G/n/keBD4n3ifR
9xr2T9w+TNjQsmnRPVMy50rBY31VLvyq2G8Xfk7sbwi/JtYzwpEH5Ac8nveU
9j9i/ZAWzjwy734/ivn1OPPocXj3uNuPypqvHN+VdL7d73eBw7+b96x9KubH
7y8xP36fh/nx+yfMz773GVJZ8TXz4+NE5sfHL8yP95OZH+9fMT/ezjI/Xn8y
P+DlQ0pu71u8O+EXnu1v/X/Wi2sfHK5f/x2Wf3f/wKarl7YYoX6Y9+6DOhzc
4cQyyYHvh7/pb9R+s05qP3+z70f9u34S17/G7/rJ+d2zy4O3LmrXa22WnL+/
bO2gz9/4KWtdDL/8kCvfSZdnraOLpozvt2XADuHMa/WjOz/ZtsofwnmeH8+R
3Qrzmu/eFa4bNKzNrlvWC+++vdH65bf9Gn5sse6j884rFf72sMELn1v+S+AX
nHb8O3D65TngydjN/Xd//Huo9/1xF3X4IxMX7H/OJddMbLYjnLd8Qv7tz2Xe
l7/5/+D8e/oD5/193MG63npHh253HbxB+Pi7Hvij9tRfs/xY+PX+KnqgzRv5
8wa/nOGntOqq9BettmX5M8yf91tox78Dp19vp5APb48YN+8Bznvm0p9eDnPJ
Qy7ecvGca35zyXku/nPJYS7+c81XLrnKtb5yzWMu+c81j7nmPZc851rXueQh
17rLJQ+55CfXOsqlT3LJVS49k0sPPNR0XeGePZk8rA+u3j2lSr03wvKe98/e
s2eH9HD/Lh22bjnqP8Jp37u0Ufngz0aHU8Ye+tWePVvV/oOPjxk6q1oGp/2Q
J+9dHsaODc3M3tF+58TWZ/ac9q5w2o/ZvK1L52YfhhV7n7te7YsmFH384T8+
EE77qrWGVf9m18TQYm+71Wp/5+W/dJ7bOoPTftYR858/9qTC0HIvvkjt1205
9oRRDSebPSwoBOd8Pu3pp+EnE4/cXa1I7cFPt3PRDSray169VXR2lbIrZgun
/R8tbjlmy6cLQ6OKcar95EFfXvj7zAXCaV/96k+WXNFiSVhWwYPaj25wdYMD
hqSEK+9scK+vSt/4NjTm/IG1//L5RfXL5y4TTvvjtjx+0ah3Voc2FfOo9pc+
0XpHmydWCVf+2pR2p/5w8brwbYWcqH3nTQ/eNua5tcJpP7B7wzdrV9sYHqyQ
Q7W/c9zoS+/auSEgn/h7Rx5f55q/3fK25BC85vXT7q0/YpzkDfyZY44tS0/5
UHIF/uaio75Yu2CS5Ad8TLvbt3/QborkBPyjHqPaXzq9SPMOfl+DeVXbVpqr
eQc/y85pM7/gA16q8/Q7s5doHsHn3rnr71sGLdd8gQ8ZtzlVpccazQt4x2er
V2p+yA/iH3zYO/+69rkqm8Qb/vDIk6rV3fbQePEGPqDHdc8+cPUE8QZ+xrCp
T5a98ol4Ax/at+a1bbtOFW/g5x/67G2jB80Qb+Cfz+mxttW2ueIN/KALpvV/
vGyReAMvtnPX8Abe4cYRZ/58yQrxBn7n6pEPTy1fI97AO3dfPP/GL38Qb+Cj
N9WqW/PAn8QPccE1rz97wmHbJogf8CWdu3bac+un4gf89n+9nyS3JuIH/PvC
B4bvOHGm+AH/rf/uKY1/nCd+wPv2+Ft5rVe+Ej/6Xjyj+m/b8peKH3DOS8MP
+PW12x83cMj34ge8819GvvT6sBLxA/75Sc989WTlzU5O0sntVUur1jzjMycn
6eSdNS2HNw/TnJykk3tv6fNZ5/UznZykkzObvDyy9ndfODlJJ0vfeHVsj78u
dnLyP3zCm//95fBvnJykk9c+Gdzxmo4rnZykle8Zy0k66XRAt+4rL1jv5CSd
pAZWe+rA/X92cpJOdi97/tVex211PKSSfw0c1H793GmOh1RSs+4Va157fZbj
IZU8sOAv/assnu94SCVnrfrtpo9XL3Y8pJIuo9r23Fr6jeMhldzb+Nv/zOn9
neMhlXQ+YtIbtyxOOx5Sym+NeUglGz5//NzHKm1xPKSS066o8v6C1VsdD6mk
0detllYa/Kt4IM4dbXYKHsALzR7Bg9qb3YEH8EVmX+ABHDsCD+DYC3gA79bw
zZKXqv8oHsD37P1vi3gAvzP1YHLyi7+IB/B5XT/8Z8+7fxMP4M0Pv/uyI3fm
5Tt5CLvMLjt5CDXN/jp5CBeYnXXyEI43e+rkIXQ2u+nkIdxj9tHNu76vuXkP
A4tPPWtej9/9vIfSV4YP+mxkpXw37+GZom/rzRxxoHvfdOhvdsrpgTDP7JTT
A+Exs1NOD4TOZqecHgjYKbeuQxM7P+bWdZjS+KPXrjh9v3y3rsOqXyZ/+9Ct
Vdx7pUPzV3vWfbLGwflOz4fzzI44PR+wI07Ph05mR5yeD9gRp591btPp59C6
5X9ePi2/ar7Tz6F09I6uZcccku/0c3ik4J7+HXbXdvNSHtDzzo6HTqbnnR0P
6HlnZ8NDdu7O2dmw6puZC8Y3O9TxXB4+7DX7u8GTD3M8l4fj+tS7e+u/6+c7
Py10Nj3s/LSAHnZ+Wthjetj5UTrX6vyo8EOLuh2nDKqT7/yoMO/WOf+d8VKD
fOdHhVVtRjSf+FFTH++EjaYnXVwT2pqedPFLaGJ60vn5Oo/q/Plwa997N78w
vGG+89vD71NbfpV/bbN855+HVSes3N7zmZYaJ3EceszFZaFdcbUNTwz/zcdf
ocbIT/5x4uGV8l2cFR7bPfaZsh0H5Lt4KnRfOXlot5Nr5Lu4KZz+3YxVR9eq
le/iozDpsIebHti0Xr6Lj3Su2MU74ct+y3ptrdk838U1YeG2hi9UfeqYfBe/
KD51cUomHo/jEeEu7siKc/kd6OLZF7+st6bj8D+SB57tc8tNH74lPt974Pz9
h7fYlXT/ZsSb1V8pkB5gP/voYXOPP+6196XfVi6d0KlFp93J0E1Pb12xdYL0
+Vbbtzyp4NTDll3xiexa9ZPqPzep757k4E77P9DxqULJVW+Lj9q6+PFhG//N
gx6s9GqlTJzI+L8Y3/DX7idl4j7Gf9i888fs/uwb+cOM/5Q/HztoTIeViiOK
bfxjPttUfNng7xWvMf6BA/uveWPYD/ITpn/a4a1JfXckBb9/9mLrH0aLT35H
/bBkzJttxorPslrv/9hx+M7kb5sm79+g2wfisxrfD9dddengGz4Wn0361jmp
eNKvyfhn72x7e9vPxGfb+p0ua9Hpt6ThgodOuKdmIj4vnvPgPX2Lf0uu7XHJ
zrJdmXh8nMVHZ7q4rMjGf1n+3NfHX5CJy1bY+Hduy69zUZtvxSfjf/qfdf9e
+2+rxCfjH5Fc36XjV2nxyfiHPT2x57XnrxdvB1zy7pN9i8uT9C+13m/75Tjx
duSuleMn9d2abHy2dtkb/T4Ub/w+sbLFf1vOmyjeLrTvA0ffO/a6Sg0mi7eb
Kw+qO7zFtuSlln9sWTxnmnh78MNxpxdP2pb8pXDZr23fnSneXrhh9XUtOm1P
Orz09/uWnztPvG2xuGmFi8sOtPGvanbqY6+9v1y8NbLxb91SaV5SPxOXMf7B
sxbNPavxOvHG+Ee9tWNjnWo/ip8X9srzT8lLbW5bdfSjmbhsxl653ZxUWVpa
48u/fKJ+K+Tz52TUDesefWlXofjh98hbTp+3oWqR+Cl4ZcUfHYeXJtXrdPv9
kctni59pHQ9uMrxFWdJ1ysqZdzw8X/ws23Z2u+JJZcngOvdumfbVV07/b0qK
XFz2oo3/9VcGLRpYNxOXzbTx95t/dvjzHT+IH8b/+een3/nV7I3ioeFePtcm
/1hYeOuA1z8VDxX7neuShh0avd1qzVTxUDG/PySjx94zak+nGeJhnH13+r5v
yR+z98wRD/z2XveXQyt/slA8VMjzj0mvc26//tDzU+KhYt1tTE5q1f3SHjd+
Ix5Kc8RljWz81y3+aOJRU0rEw4U2/sWLH9g29PGfxMNDNv4NL5zV5p0uZeKh
8972Xyfz646/+cbu05xf8U1y/E8fPVD3qZniofre8S9PPp3dd3fNcfPEQx/7
LnfPQU9d+/KWReJh9t55+S7p3K/7/G6zlogHfp8YctENi7p+Kx6m75WT75N/
X3vIqqWzvxMPZRZPdXRx2UU2/vUbptx/7jk/i4fxNv4lLe/rc8Hb5eLhIBv/
40tGf/vXmjvEw5q9/Y9KPj6h7PITFsxyfuCE5LnG2/ZcfuV88XDH3vednLQ7
4q7L6h22WDz8Yt8tT3z1ytP/G5aKhw/2jmd2snr5mbedefEK8XD73n7mJ59/
dF/PbievEQ/8drvhz9eWLFrr4rKCwt0uLqv8VsX4p0ye+Gr5jq3iYaeNv0fX
rmvSi3aKh/42/gZHnPbiivG7xUML66+P2cHYn58fFpgdhIe3K94rYAfhYYN9
1z3V7CA8XFXx3IAdhIcK/ieEe8wO8p6bLJ4a4+Iyfs82P433vdHG+fSPVx3Z
fkie/J9RNs4DLk0KyvpUlt9SoZe+D9gp3reJ9feb2Sned1qFPIdnzE7xvjfZ
923sFO9buULewtNmp3ivnyyeauTisqk2nqc61C2t/34l+XX84mfyXomNZ+oH
Bff/cMxBeq/TKvRJWGN2hPeqUqF/AnaE96K/IWZHeK8C+57/ltkRxn9zjrjs
FHvunnEvDSj7RxWN/0B77n5VF/17+Zk1NX5+25o/zPjNLoT/mJ5n/EmFHQno
ecY/psLuBPQ849xs8dSDLi77xvpv323b5wsvOkTjnGr9H7/610W396+tcdL/
pR1eeq52jcM1TrPv4XrTw4zzgQp/IKRMDzPOHhX+Q/jR9DDjfDdHXDbc+m/2
/YnTJ3x9mMZ5v/X/zLuz72idPkLjpP/XdlU+Zceexhqn+W9ho+lJxlkhJ7+F
paYnGWfjCv8qPGF6Mo7Hfw/1XFx2kfW/oMaOCzp92kDjPNX6f+XcuxrPattU
46T/Q9v8bcfwzkdpnOa3h8T0GOPk3EEv02OM0/zq0Mj0GONsYnHKgS5uqmb9
96lx4+hn7mqmcdL/lhEnzFq48WiNc4X1T7zD95QR5tdhR8Arm/9Gvh5+Pv4P
eli4+S3UeaCfb80vqm/vBf68+T/k/eEPo2/OMX0Ifr/Z/aZuPNXND0FPgnc2
/4H8Sp57uvkn6E/w+uaHkG+I/9nb/AH2ncB7GM54GOcs8xPQe+AHmL1mPIwT
uzHE9CH4O2b3yXtlnEXmV0wxPQnewfwH8kOdvdA4GX+52fcnbTzgGw0f6ubl
fesnb3yFPgS/3uwv42T8fc0fyDM9Cb7K7DjjZPzHm59wqulP8Knmz5DX6fwB
5RE7f0B5te69tK/leFB+sXuvcK7pVceD8nDde4UTTN86HpSX6t4rXGJ62PGg
fFXnH+p9nX+o93X+od7LyW1oZ+N3ci697eRWetvJufa1nNyGYabPnZwrH9nJ
rfS8k3PlKeNHNqhYp+Fxp88tvhA/Lh4R7uIO8ebiDvHm4g7NO7y9a34FdgR8
nKsP4PRY+MLsi9N74sfpsfBvsztO74kfp8fCwWaPnN5TXjN6Z3qF3g43mT53
cW4Wn8Mr9Hao7+xUL/JWjE8XFwt38a94dvGv5NDFv+ITnvnFPsb7gZk6BvBc
av1gN8Et3hefzq6FzWZPnR0Un86uZdlZs4PCsXM8H//f7c+If+alIt7fqrjA
7dtk8W/7SOFAs3du30b8u30e4W4/R/Lv9nM0L24/R/LMvHAOq43x7HH4hxd+
F9g+MH/DD/wzL/Dj93vhx8+L+Tm5/CLhxBFVqHth8+L2J1XfgHksrdgPVBzk
9i01X8wj4yU+cvuZqoegfYaK/UnFTW4/U/Pl9j+Fu33O4O2s7XNqHt0+p+aL
edT5a5sXjzNfWo/Wj9+3hx8/j/x6HH78PE6z9/L4JcYDuNvP1zwyvzPsHB1+
EfgsV7+C+R1v/eAvuf1/zSPzO6Jif15xpfsukDWPFmco3nTfBTSPtD/I4oUj
XLxj3wvkbzDvL9l4TrX5dd8LNI/ue0HWdxmPM7/w4/GVLk5hfuHH47+4c+PM
L78ehwf/3YfvLNTfcO2T/u4c2oPROYjS4OQqWW9xsZND1bVwcpu8ad+LnZxn
9c+5fs6lOP2mfUKnD/Vc+uE8WPHFjY9a0WB7cHo1+cq+wzo9rPHQP/kHnBtx
9jSZavGvs79Z46EfzpnQP+eyDr7kgvsabN6u9uCP/Wl751G37XLnFbck7Cs6
P0Hjl54x/C77fur8t4T9OufvqR4I46SfL+zcCP1znir/kvsWXjc1E1+rTpqd
J6Ef2q+fceI79YZk4mXwTxutXH/aC/v7fSe9V/xduyT5sO6cZvmvlbrzgZn3
cvtvqpsRnxssSTg3Ep+XSyd3W94T46c950noR+ey7rml0rCRe5wcliScM4nn
PZ388PK6Gg9fkInTwbeOqXv6QzWq+31F8RCfoyhOepzwzLmPnlHm91f1vvH5
iuJkha0L3ren2weI57c44fxJzE8qudLyv+L5LU5W27mUmJ9UUqvO5j/PPOCA
/Hjei5MWdl4l5ieV3LJ9bL1q+x/k+EklBzYeMGDT5X/Kd/vM4ic+11GUHNb+
ij7TlpX5fXjVVYjPexRpPcbnPYqy1uPPOfYTwDn3Qvs8+y9Yflz8vkXJFjsP
Qz+0/7592D7iV89DUcI5Gfqh/dybrvl9284/qT34x+1KurQ7tJ7s5tcWpw90
56zs9yz4dN87XP0QztUUKa+Q9h0t/t3g9lHtO5H4d9+VhLt5DOgZN1+hxPSJ
m6/wiekTN1/aJ3HzpfM/Ts5DV8tbdPMVJti5ICfn4al38ofkvVbLz5fOCzk5
D11G99o6bGM9L+eh14/fFa/+oJH8JfYfRpk9dd/pgp8v8vmwp7Qn7k6ZPXXf
PV29EfaTi1XHwJ1TDdjZ+NxXcehk+tDpq4Dec3opoPecXsratwFfZ+egnN5W
vQKnl3Q+yuntsKXy+he+nXm410s6N+X0dph104inr13S2OvtsPCBxx5+/bYW
8ofZD8HfcN+dNV/xefuSgL+hOMvi+kLzN9x3fJ2HjM/nlwT8DXfuOtQ0/cb8
0h597s5jB/RefA6tJKDP43NoJeFW09vOXgf0trPX2l9ydjn0sfNjsTxsCkMt
L9jZZZ0rc/5J+NMdb7++6f4m+c4uh+/svJnzT0LPFp8uWXf8UYqDGtnz/zC/
y52v0Dwq/jW8n/ldtD/f9gGYL3eORXUAmC/6mWt+l8s7kD5kvmiP3+XyEaQn
4+8vWwL2yOUpSH8y77RfY/aIeVe9FLM7zDv4R2Z3mEfwA93+FXi9TpMfXLBf
c7euy8M0y/t2fmloUvJSv2v6HuPWdXnYs+CnY1r9nNkn9Pl9zg/Piqc87s4j
ad7B2efBL2V+wdGr7jyY5p35pT1+qcvfUV0R5lf5f+aXuryegF/K/NIev9Tl
+0g/IyeqT2J20OUBSW8jJ6p3anYQOQHH3iEnqvdj9i7Xfhrzq/oKr1+64aIL
jnX6ZHv4l9UBcHFcVjzu8yJdvJYlJ7nae9ydA5ScgLNfdLP57e4cpuQBOaH9
SrOzyAN4U7cvBz7V/HaXV6h6Msw77fHbXV5hqG16nnlX3Vfz211eYbjN9D/y
Q/sLzS67/MHg/Xnal5pdRn7AZ5v9RX7Asb+59uuYd5/H6vL+subdt3d5f1ny
4Nu7vL+s9h5353UlP+DsO9W1uAb5AT/U7DvyA/53s+PuHK/2aZl38BMtfmF+
wcssTmEewR+1eIR5B6f+D/MLXtvscvx9ZFfoY/b3/9pn8zg8exyec+G5zkuT
j/lQ+XU7n22S2TdTvrDpeacfkptsXTt7lNSx+XL+TOLjJvx/7IjLFwvE+y7P
LtC/y1tUXOb2W8IlE5ovGHB8K60j+AHnvW7+bcwhh00ty+K/6qQ/HXjY1G1Z
68jnfdP/hE9PX3rklGz+80cctePM+zf9n/j/7/Ewr8w/+eCSA9alyQPzDU5+
LvMNTv4p8w1O3iX7PuDkIbLfAU5eHvE8OHlqyA04eVvIDTj5TcgBOPlBypMx
nLwb7JzOpVqeC/oLnLwS+EQ/kS8Pn+Dk18MnOHnN8AlO3i58gpOvCp/g5G/C
p/q3fEb4BCe/Dz7V3vLd4BOcvDD4BCevCj7ByVeCT3Dyg9BH4OS5wCd6nXoC
8AlO/QH4BCcfHD7ByXeGT3DyfOETnLxX+AQnDxQ+wcmLhE/5y5YnCJ/g5NPB
Jzj5aPAJTp6X7hcxnDwgeEMvUlcB3sCpwwBv4OTLwxs4+eDwBk4eNLyBkxcM
b+DkycIbOHmj8AZOHiW8gZNvCG/g5OvBG/jsqC5Txq/09b3B8RvhGZzvuboP
GD/U6lHAMzj1K+AZnPoD8AxOfj08g5NXDs/g5FnDMzh5x/AMTh4uPIOTlwrP
4ORvwjM49heewYnT4Vn9W1wGz+D42/AMTp4aPOMXUMcDnsGp+wHP4NRzgGdw
6hXAMzh5+vAMTt46PIOTxw3P2ne0vGZ4BifPF57B8XPgGZz9K3gGZ38DnsGJ
Z+EZnDgFnsHJ+4Nn/DLqnMT3aRYUUucE/mlPHZX4Xs6CQn/PKe2ppwFO+7Pc
vZz67m11JMBpX+zu66Q9dRXAaT/D3eNJe+oPgNO+s7vfk/bk6YPTvpO791N5
E1E+O/8VFJLPjpzQHn8YOQFn/xk5AWffEjkBZ18LOQFnHwM5ASc+RU7AyQON
7+UqKKwS38OYEPdQ3wZ5AKceDvMOTr0U5heceiDMIzh+GvMFTl0I5gWcOgmM
H5x8VcZPfEa9HcYPTn0exg9OXRfGD45fxPjBqdfB+MG9XwRO/izjxK+nzg/j
BMcPYZzKpzB/g3GqH/M3GCc4/gbPJc6gXhDPBae+EM8Fp44NzwXHXvNc8NlR
3cW08LtdfWnwK10dafDg6kWDd3V1obUP5+o/gw91dZ7Bp7l6zuDsyzGP4D7+
Ip6jnhJ8gmOv4RMcuwyf4Nhl+ATHLsMnOHYZPsH53gGf4HyfhU9w9j/hE5zv
TfAJzncK+ARnHxu9BO7r6XkcPomb+c4LnzqHa3YZPsHZx4BPcL6Pwyc45zrg
Exz7C5/gt0T7hHl54Hy/hk9w9o3hE5zvcfCp7zm2j4Qc+vN18Olx+MzRPmF/
gv0feAPHHsEbOPYI3sA59wJv4NgjeAPHHsEbON/34U37VbavDm/g7JfCm855
2f4PcujPm8Gnx+HT4/DpcfLn2Tcgj578cPC1lidOXjQ4+dHkCYOTL0zeLPgX
lj/b3OwceG/LoyTPEJx8Q/L0lIdq+Xqc/wYnD45zxto/sbwzzqdqn8TyvMin
Aievinx49gHIiy+yfCTlC1o+OHnR4ORHkycMTr5wM7Oj4L9bHiX5h+DkIZLX
p/0Ny+8jj077GJZPR94aOPlr5HGp7oidzy+383PE7+Szk9et/QTL765meUfg
5DuTB6j9Acs3JO8OnPw+8txUZ8DyL8hbAyd/bbyd6yL+XWN55eRXg99redbk
VyuetTzr3i6OoN7FOOf/U7eBegTgK6J7ujP+PPn45KV7v508bXDytcnjBecc
HXmw4I3texP5peCcgyKfE5y8TvInwdtH9xv+LrxedG9jxq/mezF1K/BXWafU
ZQD/ztYp9QjAVZfA9AY4efrkq8tPtnVK3i84597JpwUnr5b8VXDyWMkXBSf/
iPxMcPI0yYcEV16k6Qf8YdYpdRbA77B1St0BcOoPkIcPzjlb8oHBOb9N/i04
ebjku4KT90p+KTh5pugBcPI6qQchf5u6EKYHwDlXRr0AcPKn0APg5AWjB8DJ
z0IPgJP3Sn4pOPaL8+LoB87Vk0eBHuBcZTWH057z99pXtHU0y+Gcwyc/RHWM
rB/yDcCfNvkk3wCc732cU1ddOjvPzzl1cM7zkxekOknkw9q8g9M/eQvg9MN5
d3DkinwAcOVxWN4XcTfzW+r0kvIlbd3RnvFgl8HJA8Iug/Ncvr8q3872hThn
D07eAXmMqv9EPqONX3rDxkN+Ajh5CuR/ql6U9UM+JDj9kNcHznuR36Lv59Y/
+Q/K/7bzFeTTqh6VPZe8U3CeSx4mOM8lnxAcPk+1+ETf7W085Sa3yq+y8bC+
wMnLIG9Z54lsnD0czvjJBwYnL3ijw4fGuOJTzouWO5z3Je8UnPzT3g7H3pFX
CY69G+dw8s7I9wP39xeDt3H3/IL7e411Xsbd/6v8AHffsY/Tc+Hksas+WXRP
+nfC0UvkjSteNv7Jx9Y5aNNL11o+Njj8k88MTl7ze5bPLNz4J+8XHPtrfppw
+OccJzj5rZy/BIdn9DM4fKKffZyOfvY4+tnj6GePU6eAuJV6BdQLAIdn8vDB
4bOf5Q/oXLnp55UVekk4fJIfDk6euNXNEY6e5BwzOPnUnEsGJy8YuwOuvFSz
Oz5Ox+54HLvjcfKsstpb/QjiVuwO9R3AscvUWQDH3lG/ABzePq04fy8cfsif
Vzxufgv55OD4LeRFg5MfTV6uj7vJ//Q4eYMex955nLwy1em0/DLsZlxPN3OP
Mzh1HTn3prpWFndwfi6uv5u5xxmcepXK2zR/zN/jTHt3PsrV8c3c4wxOfU7O
76rujvV/ocP9/c70Q/1M3VNuOOf6qjr/MNafGT+Tc1wznX/4VJy/6eoQlyoP
XOfHbZzYC3DOnTIecM4T8lxwzomhJ8E59866xq8j74DzuOCcc2Y84JxrZTzg
nFdkPOCcT0PPgJM3QV4K/htxRJmLfzmvy3lx2nOunvGDc+6a8YNzzpbxq72d
n2T84JyjIz8H3OXpnMU4md+f3fiZX/Kd8DP9/ci0x4+K76ktKOzv7kf28X58
T2pB4ZXufmRw/Kj43s2CwuDuR/b7A/G9jAWFXd39yODY6/gevoLCC/d5P3JB
oTuXqHgfPvPsP3D0Ffl1+M/+fmTas47I/wF33x2Ek2cH//p+Z98j4B+c/DL4
B+c7BfyDk98E/+Cc54d/cOoMw7/iF/uuAf/g1PuFf3DO8cI/uDv/KT6dPAsn
L8bquylO8fcj05465+TLgR8cnR9IKQ5CzzBf4CXxdw3h1N9mvsD53sF8qX/T
S8rPMZx8GeYLnLrTzBc4eRbMl97X8puYL3C+mzBf4OTLMF/gnK9mvsA5l0te
blw/PnM/Mjh5Z+QbEy+wr/iuw/29yfSDviVfVHW/ou/+2fEg8kB79DPyAB6f
E8iOB5ET2qPPkRPwT6LvONnxI/Kj8Zj+R35UD8a++/TMET8iV7QnDxS5Auc7
0dgc8SbyRnvyE5E3cPJ3wH1dGuSQ9uTNIYfK87PvULniVuRT/Vh+FvIJzner
XPFsrviU/Hlwl0cvHHkmn1/5IrE/IBw9jxyCo8+RK3D0NnICjn5m3sHJc2Qe
wcmPY17AyZ9S/gz5CpYvo/vLXPwIbx6nbgI4fh11GYiblsR+nXDqBsAbOPoW
3sDx6+ANnPxoeAMnDxfewNGH8AaO3oM35ZNZHhm8+XgQ3jwObzniUI2fOhjU
0SCeop4GdSLAnZ8pHD0Gn+DoJfgEJ78ePhWfmt6AT3D0AHyCs67hE5w8Svj0
cSJ8ehw+PQ6fOeJQjb+/O88Azv1Z9EO8Sb4MzyUeJA9LdZoszuK82QUuvsPf
4H2Jd8j3hB/iDvwW+MSfxz7CP37pbHe/Kv7SYdE5lmL5M5yTRB7Qkx9G5xOy
7S9yxbqmTghyiNwyfuqzwDPjJ67330fQ514PYy+8nsEe5Vpf9M/5BPJDvJyQ
1+HHQx6IHw95I1l6z/JM/Hj+f/ef671W2n4R8kwdbO4/QJ4ftHscfrL9OnDq
Y99s+3Lg1IvmvgTk/0a794G6/+DcX3C77ceCU2ebetPgdazudJHtr4I/Z/WZ
uY+B9cW9EtwroHxHux+BuvngLa3+/3ZbL+Ctrb43da7BqXdNPWhw6kJTTxmc
usrcb8F6554L7jlQfSy7rwG7Cc59BO9a/SBw6vCz7w2+xuqQd7X9bZ2Tt7rc
1K3W9z6rX819FeifP9u9G9gj1duz+yOw4+Dcj0A9XPAr7V4A6uOrroDVyb/N
4mKdJ7d66dQNB+ceDfYP0YfcA8I9FuDcZ8E9DeDc18D9BODcU0C9fnDq9lO/
Hpw69twvgr7lnhHqtitOt/M59h1NenierSPuz1A9VztXs93Wo/S2nXuhHjo4
9Q9Zj+gZ6rezHsG5j2OArUdw6sZTVx2c+sDUSQenzh7rUd+PbL2wHsFZL6xH
cNYL96mg95Bb1ou+Bzm51XlFkxPqeCI/1POkHiI4vFEXVff2WDxIfU9w6nz2
cvta7KNSX1LnwI036kvSnu8m1CukPXyOc/ta50bfBzP7V+z/Uz9Udeysf+pU
gtMP9Q3B6Yd6o8gV8SN1LcHZN6MOKfIAvtz+Vp6lxX3UJQHvbedS0BvK17T5
op41OPN1tI1D+dbWP/VowPm+Rt1ScOqXIg/enlLvW/4zdbZNb6i+rMkDdbRV
R9PmnfrU4NSpPtHmG5w6z61sPsD5vk/9X3Deizq24Hznou6q9weo7+lx6kJ6
nDom2DXqmTCP2JEpcZ0Zd29hKfpf6+7duG6Ju8+wFH2rdeHqPrl7DvWdQvoh
ievsZb4LW3vqACoPO65fl/mOae2pV6j6DXG9PuG0x0/C7ypLZpxw9ymZ+53B
F144+K7Hfsvc4wyefmzx/te/l7mvGbz5sqtv/+tNmXuZwU+47uRUg+6TxQv4
8c163nbGo9O1znW/n7sPS+dL97u15NqxmX0rnadtV/XwN3Zn7jsGf3/P5pFv
fZm51xj8uidHDm09LXN/Mfg9z17xzdJOP4oHeKp8xZouVb/O3G+l859XJ8Mm
vDhRPIDfM/eMe198e7J40DnS0yutmfde5r5p3f9TtOXz54fP1vuC/+ruqwKv
Pui9M2rVXa33Bb+j5cfvTtyyVu8LPmy/6rMPe/JHjZ/3S9q0a3jIxowfBj7o
0tcuv7p4usYPvn36a3ecvGi2xg/e8bzStQV1FmbOZxj+1sCpEy+b+6P65/lv
TD+/2ZKD5qh/8G/r1Lr/yl4L1T/4pwufP/yjTzL5dfT35SNf1Om+OZNPBX5c
9WcLbzw0c78P/27AjJ6ntCtZ5b7jFhS+tc97UQsKJ+/zXtT/td/nvagFhV/u
817UgsJL9nkvakFhp33ei1pQeIPlkcX7dwWFf7PvSrG+KCjke0esFwoK5+yz
bl5BIfufvC/r7ydbX7wvOOuL9wVnffG+Ondq64v31fcjW1+8F/hqGz/vBU7e
BO8FTl6AzjHbujnI1kVc52p16GfrgnHKL7V1wXj89wjGA85z6Z91iZzTj99n
hndf34C/dd+I6WHa+/x93h+c+aIf+EBv0w4cPUb/Pp9d9+kYvs7mnfdXHrrx
zHPhY63ZBZ4Ljp7k34NPM/3DeMBZRzpPbPh7Jm+MB5z5hXfFuW5ewHeZn8D4
pZ/MfjF+cPQ54wdHT9IvOPqN9wJHD/Be4KyXuI73eultfR8y3I+fdYadZfw6
n2B2h/GDo88ZP/gy08M8D3yh6VveCxw9xnspLrb1znuBM37eC/wO26/jvdCL
+Am8l+p+md3kvVSn0+yR9lMMx47wXuCtzF4wDnDsBe8Ljn7mfcF5L94XnH1U
3hec8yG8r+6bNf8HnP7wf+ABHD9B91jZc1i/tNd9I279sj7Q57QHx6/QPU3E
xba+6Ad9iTzTj/IZTZ5PcX7vbicP4HyPo3/sAH4a/YPTD/2D93P3hoMf4Ork
g9e1700POf+Z/rUvaTj9695Gw/lez7yCV3H128F5LuNRnT/7jqNzkCbX9E87
1XF0dap13qlo2xcP16wkfwD8xvO+Kn+oOFPHWH7fnrOuvqtxDeHI7WkWD+p+
FnsP+me9SB/beGgPznP59zovbc9lHMjbHHtfxgHO9yPkBhw+4UH1xY1P3svv
b/Nc+uO9eC4446d/vx9O/x6nH/07x7OP98GRR+SQdsgjOO3BkU+d6zU59f2A
+/bIFeeFFOdbe+QQHv35N/oBh0/ay9938wjuedY8GG/xOZuCQp4bn+f4n39h
/fM38sj76t4iw+GH9qoDYP3zt+5RtPfSfqXhfn3pnhbTA/BCf9gRnc8z/A5n
R+SXGQ/wA36Au78JnHXB+qc/nis/wHCeS3vZBccb7f28a5/W3ZcEzngYp+qt
2jpF/njuLjcv4MRH8Au+2tV3Vf0BV98VfIKr78p7ME7Fq/Ye81w9W3CvD+mH
8TBOcOIdxgn+sRuP9JmrE+v1BuOUfTD5Z5zgyKfuJ2J9m1wxfvonPmLeae/t
Au39+P0+HuP3uO7LcDjjAff1eHk/5DM+B1lQ6OsY83z02/8D2vhpMQ==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxFm3XcF0XXxn+7O7tz85ASBkiohIAo2IEdiIWCjYEoKkoZSKuISqggFgZS
UiIoWBiUgYCBgd2tj63Yir7Xl2vfz/PH3Of8Zmdrduac61zn3Fv17N+1X1qp
VC4NlUom+bHkJpJfq7OXOpZJf1X6kqJSqZtUKk0lz1L/UvWvU/+Z0pdIf0X6
ch2vo/a4fq9S/z2Sl+t6faWvlf6uxvSR/oL0d6SvkT5f+hUas1Tn1VZ7TL8/
1D12lD4nr1RWasy88vla65ya6m8suUxj6kvfRvJZtSbSO0i+l/n+t3FN/a6n
/q0kn1D/XeofpP4H1FdD7X79Xqr+6ZIXqX+R+qqrLdLv5eqfITlQ/a+rtdA9
35NM1Gqp/xz9rqX2H7UOieeLeTtCchu1FdLbSr6iezfX8d0lB+iar6v/A/Xv
oNaM+ZS8UP3vqP8z6W9oXGv17y25n/r7qH+m+i+Q/rb0T6VfJP1d6Z9Lf1Pj
2mj8PpJvqbWVvq/kc2pNpe8o+ZHaLtIXaj4zPX9jnbtW8hDmreJ55j3+0pj2
aoerf2fmQf3vZP4mkzQ+V9tS+tkae4zG7KYxizWms/TtKr5+lca0lf6iZPPU
33175il4TJDcV9c8X/pd6n9L12ik9izXVf9yyddYkGr7qv9QqVvrnOMlN5M8
XH37q51Q8fH9yjGfMffST5TcJbe8StfbOffYnaOeQ+f3Yr2p/7+SJ2r8OZJ1
1b+X5CXqby/9bOlXSt9E+p7Sq0keqLF7qXXW7x0zX2d66mc5rHyeFrmfZZiO
f6Y56az+7nx/9XdS/wl6hlaZ3+UWnXt04fsyh1z7gPL6WwRfpzZrTW0P6S9J
fiV5ssacK/ml2vGJn3XH4Pe4WtfeTtfdVP1NJLdOvca3lfxYcnf1t5N8OfMa
H6fz1qivQeL1+prkFmqrpa/RszWWvoPk+Rr/vPreZn2qr6HaGv2urvPbSF7M
9TVuD/U/rHfZUe24it+9g849S/o0jdlF7z9Wv1dLHll4bhm/U/A7jdGxnXLP
z04ac55+Pyf9LZ3bMvibXqq+5sHzPVz657pON933jHK+j0t8v1YacxL2hzGS
RyX+/ZP6t5L8U9f8Q/fqzTHJ/TWur/RZ6v9BTZerHMeeUKsr/WjJDWr1pR8r
+b2aTqt0k/xOTZetHCP5bWo72kVyvVoV8yD5o1pkDUh+k25c3pUj9aeaBm8t
/XzpP/Nb+qmcl/k5z5P+j1oDvjfnqX9z6adxH+lbSO/B/aU3lN5T+r+sAekn
8YzqbyT9LOm7JrYD7P/qzKNkX/XXkN5COo5gQ/AaYe//R/3bSO+j/l/Yw9JP
Tz132LqjJP9Wqye9K8d1Tkfpj0h+nnttby5ZR9fZVvqFGtMxsd3AFuyZeM1g
LxpoTAfJwRrTpVwbm+nczVgT0ofyTtJ3lD6Eedaxw1nbkv/NvW9aSn6tdhjf
n3VUeB+xL3/VOdWlnyH5G+8s/Uz61HZK7G9+x7+ov5dkO93rGOkT+f66zhLm
Wh9zG8kD1T9a/U00V52YT9aU+vfH5rDvpB/AfmSepLfGv3Df3Ov8SMnT1G6R
/q7kOF3jb8artda1jtHvbbGjwWu6meR3/2/HJH/IvZZ3lfxJ7WTpu0nuonGn
avzO7A/9Hq3+dZKD1feL9EFqe+h5zpC8kzWc/89eTtaYTO0mrhW8p9pI/pLb
xhwueZB+n4+dkjxA1+mn/tm6zq+57c8Rkpfo+M/YUuyC9PWSA9UO0zk/Sd7I
/Kn1lz5H5x6q/tM1blfeVe1H9d+g47tL/6Zie3G7jqdqN+r3AHyw9Plcg00n
/R7ph6kN08/7dM3DpQ+XvlD6EdJHsJ6ln6zxv0mfrL7u0n9nHqSfIv0P6VOk
j9f1rqOxt/V7nOSjOvdq9f2JX8DuSB+mdhk+BHwj/RDJYzX+GvU9pvHXq2+E
2nj9rqP18zj7VutnivqC2s3sN53zr+Q8HaulMY9JbqYxY3T8L9YSe09j/pGc
q2OTNWay9N6a5+31uytzxb5T/53YCvUvln6H9HOl15D+iMZtqmt+or6DEu+N
RsH7ZbCObRncN1R6b7VV0t9kj0f7nqN0jVznH6ljLdWXST8IuyC9t45doPGd
dK/1wXZsrvTrM69z7PolGvOD9NXqPyPx971Q7edg23K3+gdqzPfSV0lvoOsP
1rGH1bc+Gs+1k96gMGZbJLlZYRz4YOF3L6RPBesVxm/3Sq7UuXtmXu/sO65/
dmGbz/OcU3htf4ttLLyGv2PvS6+jZzhXz3CH9IsK9z+j42cmXsMXqd2k614s
uZfGdU/sm3nnU8CCFfuV2zPvuf2CsQh7DT82OvP+xUddzb3Lfbqw8B78SPpR
GnO9+pfqW/RPvG4vx2YV3hfrsQGJcQx774TEmIC9emRiPMT9RhXejy9r/K2Z
9+W+PE9hm/AKdijzHt07eI1N4B0kRxbevy9pzNHq+6JiWzMi8/phHXVJ7F95
n8syryXW1AWF53alzr0v8949I9huc52TCttqzj0RHKTWStd6DRyh1kL6OvyA
Wkvpr0ruVBgzPw+m1fcdout+oWt8KH0QmEt688J4Zrlkw8IxxaOSWxaOTR6T
fE3jz8GXSLYojJdWSC7S72bgPsnlajuxPyQfYJz0epIPqrWUXl/yYbVtpTeQ
fEStDftX8lG1tux3ycfUtsN3SD6ltpv0ZpIr1HaW3ljyCbVdpDeRXKLWHp/N
eYWx8SrJj6Pn/Su9Y9vCGOyZwvaf9Xa69M+j100ryc+i9+Hvpb9gfZ5W2Oaz
Zk4t7FNYM6cU9qGsmRMK+01w7aeS9+s6zXWdupJd8CXlXv40eh3/yPeUfpz0
NsyDzrlL534j+ZV+P6T+atI/iV4f32h8m8I4cyX3Vf8J4FbJx9V2AMdIfq22
WHp17Ed0rNiY54+OLRuxD6LjtPqstegYb1PpX0o/XnpbyQWFfceHuu8C9d3A
XIEly7hvlfbX+4ljJeLSh4LX2Kc6XgOsxh5TeyJ4TX6r/ieD1+T30p8KXrc/
Su9WGGeDf1iPYBhiiKfVtsUv8v0kX2Y94/sTx61g628Tx4mvSe+hcQ9Lvkic
Jf1W6SukJ7r+bP2uCaiUPpNnlJ5Kv5t1K32s9BN0v9rSRwfbzBU6NjbYZj6J
31C7TZd4IrWPu136k9LPkL6Y/S59YGaMRty2PnGMSYz6U+L4lFj0JfYW61D6
vcSG0j/QeXcHf983M++zlTr+uq45JXivvaK+y3O/40t63tP1e6H0tRpzDzZd
YzaRPE3996n/BfXPC17zb6vvzuA9/pL0pxPzAPAUTyaO9+Em3k4cvxA/YCfA
osR5PyeOkYmf5wfvr3d1/LRgnztD+i1wIJzLegm2Ic9IX5GYA4HvuFjPP1fy
KT3n9cFrfrjkTcF2ZrXGD9GxTvr9H32LDRo/QePHqe+f3Lb9WvxnYhwyUq2L
zpkouYwYPzEmuQLMVBh7vKXzpmfGIF103ZsLP/PbufffFOlP69yRiXEF97sr
M444RuOnSh+FfwjeH1Oxz6n33zR8XOrYFcxMDPpAZpxyFnph3PKx7rUoM048
E7wp/V7pz+vcUToOHuPdZml8lfSakqdozAL1PZd6T4NV+gbbBvDM+dLnJPbj
8EFXJcZ4zMVxhePfTXXfOZnx1EkaP6kwZn5H/Zfpd2Qt6vjcxPflfvMkqyV+
vqHBfq03PEbh953NOxWeh7sk/819z/HSTw2e82m6ZlZ4bqdJzk+8PlmXVwfj
jWVgzODnf1j6BcE2517ph2BLKo5V5hZ+ntqSt6ptqBj/H5wYn+E7Z2WOA7rq
GidnXmNriAc1/kFsndZSd/aY+p8lTlX/Quyz+iP2Gj8l/STJOdhq5lx2sDW2
UfLLMkbbQvK8wljsSel9c88J++6Gwv6a9bY8tc0Eb/PsC8r5ZE9u3Jvq75fb
lsKl3VR4bbAm94uev9vwRYWv8ybYVc83jLUTvbZYY9i19jrWrWLfd0U0xsUX
bKf+LhX7092ln1Kx3+wo/dSK/WZbMFPF/re19CMrft820o+o2EfjW3pKn6Jn
3z53fEec1w58U7GP3lN694r9fq53vTZxnNZLz3mt5OOp98E1JYbfuEcT79Ml
qfccWH3jGinXCWtkYWLO5UBdd62Ovxq9ziaW+x4bcHliOwDmYw8RF7DWWfPY
kTGF9Tfw4YVjEPRuOnap+u/HxhaOOz4A1xV+RvYIe5Xvgs9gbY5O/I33j7Z5
t0vuQ1yqvqbROHRs4nOwRzwncdZG3jQxrwR/xDvhX8CnlybGqF8VjqHe1/XG
BNt29sgxrDnpW+v6+0k/vWIs9Ak8YMX+8etgTmOGjn8TzGncJX2k2kMVY7aP
4T0r9rkfwUlV7Ivra8xu0mtqzIepuVb89d+5MTZY+9tgPmSm+hqp7S29lsZ/
F8xtzgIrBXMs0yF4SjuDvUnKPcve7cG7Sd9W516Ye691kP5FMFczFWwbzBdN
AWcFczLTwE7BnNJkMFcwf3InMUowNzNbej21XaXX0DUbSt9Hem3pjdlXFWPU
Wrk5E7iTGuwr6VH9hxXmWOBoa6q/vfqrqb+69B2kV0n/NDdWAbMcIL2H9K3K
mImY7m7N39jo+Im+y6RvzrqWPKIwbwPnNyyaPwrsF12npc7NS8zIXr4RfxTN
m4Aht4JHqBhLN8nNmcCdDCrMLXwJVlf/vuqvozF14TXYQ9IL6a34JNJjbk4J
bmmLzNccA/eCPa0Yn58ufaz01tJvL+xrWJP4PGw+8fbw3OvzoGgcsarEEoey
znT8rWissToxR9pJvz9S/5vRfAex156sgcKxFXHi5iXvCv86NZjTBqsQS/VK
HGuNyL134GJ30/nXSI6THFD4OHETWGZliWeG5PZpTcv1OCSxnzgsNxe9q86d
nzomhWPpV1h/Wsc75+ZEiRn7FI5fn5J+T2odvgV+h9hxd13n7sL2HIwM7w//
D565vDD2IB4EEy1JfGxvnXOzjt8oObywLVyrMTfq3EcqxkUPprZtcC836/ej
FWMq+IB+if0QuGlZ4vzNJbnzPuR/vi2MM5/m/oXfm7gV7DMoMb4ZmNsn4lMu
LYxzXsRmpH4eeJ6HU/fD8+DbByZ+n6GFn+1g9V9R+HrEy5tp/EzWp2TPzO/y
cmoOYEDiudtX97uNd8J+qk3CB8aSP9DxV4O5kwmlfwA/PlViyDsLYyFsNdhk
ZuKc2eOJ8SRzBDZi3YLpZyUexxhyZmAlME+f3Ou5dom57inxD5hsIzbLjO2m
VcxDgcM4/iz4unBeDM6BXNeMivEEOO6mEsuRM2MM2OL+wnMCDpyu4zMSf6eY
+jc6/A0xxVOp4yvWEvzp/MLXJxYD391SYrwDorHSZMnzc2MtcCNYFh0OC7zI
XBHnwD9dLv0B1nthjgXuCJ7jnMT7EE6xT2JbdnAwV/dKcJ6SuX9f1xiW2z+T
Qxyae67IFZI7ZA2C//fQM10neY3kXmoTpF8bzZ30Tnzv/TV+gOTc1P5haGLu
lZwl89G75PluSLwOyInyDcGK5FDZ3x9mxo+zSwwM/mOd35HZd52XOPbuqHtP
VN91xLjBPOU6yXMzx2FvEMfl5i27lTEI/OQ1vFfpl/HPq4Jjul81ZvvC89FC
uOyN4PjoN/3uqP71km2rzM+Qo7tR134mOAb8JTPHwrsMKuN61uyVubkL5vBq
7D3ci/RPgvmBeeX+htshj3SD9BXB8e/XmX0Tubi/9I6H5MZs52rsQbm5a3wS
Po683B8asyw4Rl+KnQmO5bHdy4Nj7TmS7QvPcSu9ywPBcTd2HK6JfNdE9qD6
F6t/fDBfxHcYrP4mhfdK4yrnPrbimxKPZ/ZHA6TXyuyvR0j/Q60Zzwy/Dfaq
OD+FfcHOYAvJt5I/JmSCZ6ittq7ifMQm/GY/Z8Yzl6b2c7tLvyx1bgi/P0h6
zOzfL5E+N9hOToSLLYzNm+qZmxW2AU2kz9axFzVmlmTPEv8TB8ApYcuv0vNO
DvaF4NROhXO2v+F/M+OHgan5WGzCgNyc26LSp32d+H34Hh2DeVf2zB7BfCB+
Do4NvD0hte8Hh18vvUUwN0jOrmlmzD8+Nb4BJ1wpvX5m/DNKeiPiK+njpDfM
7PfHko/KjB+uSB33ECPcKn3LzHnYa1JzdWDd21Lzcz3Ya9K3yX3Nk/VOTYN5
MPLO9Urb1T83/0d+8+bUvOCx0m/iXYI5NPKSxBWs1cmpOUJilklcP5jzJI8J
RwgGvp1cUub45TrpjTPHL9fyXsHxI/x83cw4cKT6jwq2Qfiew4OxBT54n2B+
GxuxZzB3jf3qEMwTkmPdLpj3Iw/eLpgPJN+9QzBPSB75iGB7OqnEz9ihKq2f
fSSHqn8BazszvlosffPgGJacQoPca/V4sFNwbptcNrwme2Gqxv+c23+CRzrk
nsMeYMDCtn2wZOfMduwRjf8rtx8HX/yZex/ht7smzpGBb+qnXnvsI/ZX3dQ1
DX8n3lfk+NaWGDsN3mf0c/zm3DwcdRTULpCTLLAfwWumfnAOHi6iBrFUbm6J
Og1qJTYkrqUAd/+TmDu7JTenSD0GdhP72UVz8kJw/pek8RapcSU1I3Bmrya2
R4dH28J3iU0K27GXsbWhzNHo2ILgsXBi7Fv2L/UaXaPt9wfRthibfEg0f/Z6
YpubpfaR+Mfa5byxd8fn5uu4V7/MPOV7qTlG8lDTJc/KzUluH80/ECuSuzg7
N6+4g/ovkj5bevtoTpKYlNh0dBm3Er+epDFDNKa5xpyYe121iOYxiLHhnOA9
iMPXS/bSmEka005jamaOC4anJf+aOIackNsPUm/zARhC+vuFfQzvfZTO7Z+Z
Z31f554UnV9dFs3vfp84nrwiNxcK5sQ3MM9HwmPknv8jojngHxLHoqNy48OD
o23wusTPAb/4ZuJvf3q0bX4j2gZXSz3XZ0T7qHei/U9V6ntTwwFf2iZ1nRC8
dDswe3SOn4KC33TeZlKTaN/dXv3vSL4WjIeHBGNQsOjZwbVK7A3qfPgmeWpO
ge/P/oHvpt4JjAffxP6olzpHTt0VHHIr7p051utfHq9e+qx1JSY5FuyT2r+Q
232lxGAHBuM29jg507qlL8QPEl/uLDmM6+f2s/i6f/Hp7Fm947jc8VTnaH73
vcT7cExuHEUN2DHRuOb9aD//QeK9PTZ3bEdN1H3B6wHuF7zwUeK9enQ0rnlP
cnRurEgNzKLgbwi/TT0K9wQbkf9PUvuDH4LrIsAIhxautaD2qlNpI6ir+jEY
C/3LfgrGCVk0RuKbUEd2bnS9yD+FawHS1Haze3ROfpXkwYXtGbVyP6VeAydL
Pqlju2bmcIghHivjiJOjn5HaHLh9Yv86wfwnkz+nMM8JTp1ZmCMFo8+T7BmN
rd4u74vt/CX6WXlm7Bg1aeBJcGWPaHzxenQ9GDaxZvCcYFN/hfPJvJ7Jt/Qt
vwHY7YfM+5m8yp3R78Y8UP9GDmVlcA0b8xmDa+fAomDSn8ox5FvAruiv40+i
azIe17uPiK4jeTR3jQo+q6vGjIFbVP8TufOk+FZ87OjonN0K9Y/PjGfANfCo
+OVjiUfLOV+eu3YFf/eJ5KXR9SuPEZtG8xTwJ1dG5/6W5sbe5E1WF8aorGlq
r4ZH1448lJf1ZBXji06Z40/qKcjb4qPx1eSjwQBggUMyx9XUU1BzCK4GX3+T
2caRy/ous/0ilwUnCQcCF0LMz3enzgLeHl59ZDDPT2w5KjgvgE2+RHq13D6R
5yS/BrcI/03OF79wYXBdATYRfFpVYgPwLPkI4nC49qLKzw1vwPpZXNpgbDW+
DywPN0581TM4rwEP0iM4L4BvOi84PwIvQD4He/tIaZvJWeBTLlb/adG2Ec6A
uB6bC/ZvVe5n6nrguPDzv0fnqsGl5C7Jj/It+CbkrcFy5GRPjMYJ1PpRL8d3
vD84d4sPwC+vLr819QybltgSjHlfNP6D36M+FptFjHJcbl73+fx/HDF1K9dm
xnXgO/LW+Ah4JNYx65k8OOuS9Ul+HC4PP0/dzvG57fALkrHK6wme5KroHPQy
6aOic99L8srGAjbWPRzXP9jfzFzTLdE1N6+yX6LrbF6HD4uun4PnnBRdi/Ma
HFV0nRxc6NnR9XNwpH9LH5m53i/VvfbOzFn9G/2e8FHkzuCXr9M7XR9dq/cc
8Vp0jeyz7M3outI10m+IrjHiHRNds2NmvuuO6Bqd98qYjhzf4/j36Hom5nmH
MsYEv5+a25fxXmfm9qGcS40NXAc1KrVKzoV8F+uK2HFddO0Ne2eG5Aa1hnrf
SblrycgNkOekLoicCnmhDTpnVOY61T/0u2VqzHNWdE0h/PDC6LgIXpTaG2q9
vigcx1Gv1bcwrqY+pL/0U3LnLJj/nrk5GTiBM6NrEOGfu+euWeI7TomOXf8t
cTj4cFiJt7EnIwo/I/ECcUPv6BpHePJ+0fVzcNf9o+smqQUaEF0jSJ3PedE1
jnD7g6JrE++TfkF0beU84v7oWsZ7c68L4hTilT7RNXzw9qwR3pEasaHRtYwP
qv+uEhfCRQ+Jrl98QP1To/EKeOn86FpGcgp9o2sB4fwHR9di3p+7Voc4iHiI
nCA5nomF87bswQnS50bHovDq90bHbOQRFqjVC4595kfHnOQj5kXHqPDYc6Jj
VHh44hrs+WVg++iYFs5/dnS8B58/K5oLgPeeFs07gPeI6zfmoyUHRteDLsgd
+2/Mgxfer8TdxN8XRteS3qMxM6M5C7j6i6PrSuerf3p0nA/WmhHNL4BPyMWz
Vq8Mfj9qr4mJsDvYH3L78FFgynPwHdGYBf4DzA8erKa9mOTmLsB18CGsMWoA
4cDhq+GtqZuC8zo6OB9AXoB6s31z1+hio/bPXX+IzyWHRS6LvOWBuWsL8dd7
Zd4j1EWCCcF3xGRp7jpSvjW1QXDZ8MxZ7lpT1gx1QvDR1JnAb4+qmFf+K7jm
mfUJ33tlxbx4yyrjD+K7ozOvGeoK985dw4+vp0aHGJyaGfKf4DNqB/4u4032
QvUqn0+edFi5B5knsB8xbufS11Bz+lA0twm/dxyxae66euw29VtwxdSwHZyb
nwTbUPcGP0BdELmMZSUuhuck70D+gdwHGBusTRy6quK4hziFmIYYi7hpY512
bvuK/aFulHpvMCt1rM1y1yiCu9pV+XuQayauhB+CtwNbEgMRd4JRqXtdKvl0
icfISTWvMi4kdiO25X8KsKVrovkI8onwm8wDNYrsT/YpPpMacnzuwuB8NDlo
ctHULOITyW2B+YkP4ACa5uaj4KXwN/gd6qmOzV1Hit+BB4ZjJucDHwsHDA/d
NXcNKj6IfBaxTtCzd8tdj4qfYl9Qn/tMtO/BB1HXRG18r4rzOZ+UGJLaS/7X
hj1+u87ZusoYjthzTonbqZtqVmU8TUz0cnT9EHH3zBLPUwf1YnQ9ATH7K9G1
PuQrydmTn6aW4blozoUY/Pno2iPymy9E1wyRR6POEp6ami74ZGLKWlX+PyDe
5Vb9bqjfL2bOqVGLyfW5z9rougTi9zcy8x3UCjGWHBt1PfDYxMbwlC9F1zrA
J/C/IXCScJPzytgErErtEP70KvW/lZnjoFaInML0inNZdXLXY4P5G1X53sTp
cBngRurWaufmGOEat6zyteBMwG3gN2qF+H8o7OodwX4d/059GnV1+Av8Rsgd
w+KPfgmuscevbVdlzMf/gPwaXG+PHd4kdz05McKz0ZwafMg2VcbocA78vwkc
F/Xg2CnsFXVJ1L8Sj1PzRh7qqorzV38G15zjC6iXJWdPjdwfwTlT7Pz/AQfu
gxs=
"]], Polygon3DBox[CompressedData["
1:eJw1m3f8j9X7x+99f6REpCijjJTR3gOVFSEhGdFUVLQQmREaKqskIRUqKS0t
SrT3pJ3Wt0h7avxez17n98d5fM7rPuce7/s+57pe1+u6PrudNqTb+UkURWvT
KMr098I8ih7S3wHCr5dR9JcO7iqc6++vwndovI7wWTrpfOHt1Y4SniC8XP27
NN5I+DzhC4XvFm4ifIHwxcLf6TpVhGP9/UX4Ho3vJXyRxocJLxTeWbiv8DnC
v2peTeF/hS8SvlXjtYRPER4kfHvu5ztD+DzhfYRPE95bz/+Y8HLhpsIXa3y4
cE2144WvEX5Y/Ts13lD4XOELhBcJ1+b3Cw8W/p/urz/RD8Jnq7OTWmfhacIr
1e+v+TcKn6D7vSSchd+/rfAo4brCXYXrC98nvER4d+FBOn+I8O7C3YUbafx+
4duEdxE+TePnCk/X8R+ET431bnWsmo61Ep6Y+Hp19XztNdZTx/bQ3N46/0r1
O6j/osaXCe/Jd9X8S4Rn6PiPwqfrnLt1rJfGpwq31/EXNN5AuIdwY+EHhKuq
tRS+XHPvVf8BjR8gPFJ4pHB1tWOFpyZ+/gc1fqjwOOHLhFfo71jhUbrfiXrW
+zW+v/ClOn6pxk8VniPcTfd7WXipcAPhwRofKlyo7RHWz+3qP6a/1/D9dL0z
db2D1Pqrn+r4nWordP5+Gh+h/gjN31O4r3ATXf8h4VuEa3A/jZ8pXEOtjfCV
iX/vgtzrrafwQOFDdd489W9RW8f5wn+wXnXPh3Ts98zPF+v4Ao3vrfO7CbcQ
niD8m8YbC0fC84XXF1H0sc59X+d+JNxDuKVwdc1bJrxa55+v6bdr/ArhJ4WH
CN8hPFl4lfB5wrcJTxKuFr7Hzrr+WOENut6nut4HGv9Y+AXhdcJvCa8XrhT2
W2Xd73fhr4Q/F64t/KnwI8JHC0/S/NHCW3R+JfXfVXtf+CmND9X4YuEpwi9q
/Fld/23hDcI75F4PtfQ8S4WfED5XeJHGJ7Jecr/v2hq/U3hH4XbCuwrfLVw5
tz3ZQfgOvo9wW+FdhO8qvY/Zz4fG/g3b5V6f1TW+WONVcu+PGsJLhEvhg4W3
T71+CuGDhKsI3ybcM/ye1rpWVhFFzwuPEr5H95mm8Tf0+97UvdYLfyD8cu71
zLqeLvyS8Bjh+4SvF35X8z/U/PeEP+T9aHy0xu8Vvk54f40/yfsR/kv9xzU+
WPhW4cv5XsKXCS8Xvpb3o9ZJ+OrE63ecxtcJD9Tzvy38qPAxwldofIzwrrnt
U93U9rir8Ejho4SfF96PPSr8auLzV+kZlut5XxF+S/gHzd+k8X31Pj5nvWBT
hYcnfp9fan6i/gK1Z4VPF+6h8xcKPyc8T/f5nf2qYw/qWFtd5zz1M+yD2s0a
/03jQ3TsAeEqOudI4fHq36N+I11vBetZeKv6Fewp4WGJv2+p1kL4ksTrY56e
t7pwV+EzhOcL7yjcXfgs4S90jVj92WqrhLcrvR7GJmG9qR0oPDrxerxZ5+8g
3Fn4dOF/Mt+/0HMvLO338H8HxvaJ32j+l8IN1N+o8d+Fv+d9C3/B/YU/4/cI
fyKc577fdrreIhxL7vdbCt8qXDu3f6qT+n3UEe4iXC+1/d0s/BX+Qtf7jG+D
TxZ+LrG/3rb0+h6TeL/sq7ZY+HnhN/Bfeh+3Ce8k/Kf63/KOOZc9jn0N9ut6
4XHC9cP6aqD7j2d96Xiu3z5bx2oGG4AtwEYdgy3RvPoa31vH3tMzztP1rxMe
pH417a8lGr9Wc6fr2Lk6dqfwdcIzhc8Xvk3zZ6l/CyZT/fvU5gkvEt5R/TvV
5ggv4NWpf7buOVf9s3VuVV3/AR2bH4ffqP4dheeepPt8rWe9S3+vF56tOUN0
ztWF799Zx7/U+N3CN2nsQo3toOtdIzw+9jP/rXutEL5FeJjGa2h8oP5Oi+2T
emY+j/NnsIdTz2P+LOH72ZM6/2bhi3W8us4fomveqrHVGttceh+yH7dR6596
HvNnYmOEL+edCd8j3A8fr/lLhUu1vvgYXf969edpfBv1B+v6S4THw6N0vwWF
320Pzf2q9HHGl0U+/xyujz3SsZHqr2LdYQ+FrxA+P3d/kvq1Kvxd+b7T8Ama
e57G7xaeqOM7a/we3W9u7N9YXf1zcz8/v2MnjffD52vsbeEWwi+xbjVeEfv3
LdY5N6g/X3My9R9SWyh8qebvqPkva/4y4Upqp+Dj8RP4R+HRmnO38HThG4WH
Cq9JbV9WCE8Vfkb4EeFHhacL91ObyPPp2HyNrdP9agm/q/4uFf7d/H7eCd/n
MuGV6q/UsevUf1PP87T6O6idwVrT+ZNir7l/9dtP0ZwreD/CCzX+nNqj6j/O
N+Z5NL+2+ht0fFfdb4L+/o/1q2MtND5K11ir/lz162l8Iuta4yfr2D46dofa
a+o/w57Q2KDca+Fh9TeV5gHwgerwJx0bqfE16t+k8+pW+Lvx/ZZHfp9Pwlvx
Xzo2WWOr9Xw7qv+qjteusF/EPz6ido6Ovaa2WvOfYQ1m5gXwgxpqZ2msh45d
FtuHtlH/jdT+8Dn2vPBLhe3HZ9iRCt/vvtjP0FD9CzJ/S77pMs25svDePF79
XPOH5rYVTwl/C9/S32eF39A5S3Xue7xz4beE7xQeoDaF9QxH0dgH+En134Ef
a+w0tStZ+3Ayjb2l+zUW3qJ+A93vTeFGwpuFdxe+Vvjy2DblHz3Lx/Bq9dez
Z/n2wt8I9xHeT3hR4bXdk+8M/4IHwfd4RxofW5hrTtCxrbpeR2wM9gObqblT
dOwD4RXwUN1/dGHfO17jf+bmmfDNuthbze+secOwX+yJNPAU4Tpqg3lXOn+1
+o9pvJn6nTT/YuFLsJmp7fsr6n+Cf9fYt8LvCG8RfiozT4Qvvhp7/X2n9q7G
vxNeo/EfhNcLfy/8dPjez8deA3CjnzW+Qf0fdGxtZh4Ln62ndp7GbtSxJ9V/
XHNOF/5Q45uEv8Z/CHfV+Aj1h2v8JuGndc0l6r/AOtX7HQjv4t3HjkFfUftb
/QOIIdQfntt+PMuzl96PT8Teo03V/1yttXBNzW2m9z0i9/d6XvO/1/xXdfwf
jR+MDcvMO+Af7WLHZ9iTx2LbnL3UH1WYC40THqz+V2r9hA/X3Oa6/huZuRMc
iv3yploON4/tbzZr/iL1RwX7iR/Hnz+sY6fpGjP1fD+qv07jTSvM2+BvJ+jY
vvjizLYLG8b8czT/ZvUfZJ3q93yo8d0S+9N3MsfoxOrElH9mjpGJlYnJN2WO
yYnNieG/Ef6TOF6tPt9c+Hhd/2z1r0vNj+BYcK1qOrYxM4eDy8HBPs+sAaAF
7CT8deaYkNiQGPon1oJ+//2xbTrcEQ0ALYAY+lvsj47tofHvdb+G+v2PCN8e
+xvXVv9RtcWxv+Gu6k/W872Hfde5jTR/A3GP8K5qg3SNEYW/1bHqpxWO0YnV
0Qw2Z9ZE4IhoEluEN6nfSa0q5xSOOYk94axfZLa72N8nIvuLIYVj84uEf86t
WRDzELNthQtktq3YWOzpeYW1gQv5foU1FmJlYlJiU2J+Yn80mD/wDYX1ndd0
7J3SMTyxPDF5mluzQbtpKPxL5hidWJ2YOskdExMbw7G/yqxhoGXsJvxjZg0F
LYUY/mfhd3S/Jnq+H/WsjSsckxOb76vxODdHh6sTk3+Z2a/h31ZF9k8VqWMP
ODJc+XJdb7jGu2jeTJ07JXW80lfH9sefaO5T6leLbR/4/hti2+DDWSua85Hw
y5HtId+Z7/1i5O/7QGbbho3D3szQPWbp70/C4wvf8wbhnyM/yyzhOcK/CE8q
bIexxy9Ftqc3EKPpma7C5uv5Z2PjE2s0aDWske34VonXzo2lNY6r+U251/C2
6v+WeG2zx7bh2yTee+yxSrzrxHtvSWZfh8/DH8dBb6qU+t2zRisL/5p47aIx
oDWgKbTU3KqpYyNiJGJn/N27sX3iYYVjVGLVQbzP3HYF+/Ke8AWpNQm0CWL+
I3PHEMQSJwjXE16l+d9o/luR7fVHuuZabAvxQmmNAK2AmPhQYieN/6v5hwl3
UX834oXEmhraGvY4Em6PDy3sj9+O7eMPLRwTExsfLVw1t6aBttFaeHtixdRa
WqvI2sENub99Qx37W+dfkdsXfsgawB/o+X/S9d/XsQvxl8I/C38gfBE2W+1m
nTtAuEVum1WBrUpsy9AA0AKI8U/U+BnEILFjKuKDmwrHE8QV2+vEs3L7r94a
e7V0TEisjEZCrHiV8DUa28L9C/uDMjGHX6n+Nbz/1DHpMOEzcseDJ+PHS/Pj
ODZHXZ3Y/6ClXcD6KczPamqsmY5tCPx5O+E9hdfDDXS9hzX31NTxJfHdP8Jj
8dGaMzA3v+8DN2T96ppFYh9zc+F4LIrNmVYljgf/jRxzPZFYY0FrQWPpoWtd
LXwtvln4ksIaDVoNGgdaBzYkh2/8f/yfWdfektj2YqPwLVsT2y58DI/wbdAP
DhNYqv4StamlbRxL7PvEtg8flWDrgz6AD8T2Z6l9IxodWh0aXuvcNhtflKe2
5Wg6aDtoTN3QaoWvgquyfwrbXGzrP4ltMTYU2/h3YtuKTce3JqltPZoT2hMa
U/fcNh5fnKa2/fhIfM1fiX3najib3u3bOjYE7p2Zu8Hhhqa28djubVLb/hqZ
9Ul+9OvBn3cO/pl3ub3a4Ro/Rq2W+reU9nfVgr+vF/TE3VPbgrlqT2v8JvwV
XIPvx311/jL9/hGp9ZI2wrvo/JGp9cm2+ODMNvgS9Y/PbJvRpIYHf1Il7OcR
wV+xvz9KbGtej/170SRaJN7jcNmPE7+LhrF/f0XQy6ul1q+x6Zdq7ITMth4f
iW+snNp3okkNC/4JLfJEHV+TWNNG294+6NE1U9uebkEPbZV6LXAPtPJDIt/7
xKDvtk5tK8al1nu6wh/xx7n5Lzy4juzDi6nt0yodm43/JB6KHbujh3QPevLR
qddKj6AnH5N6b3UN+mPL1Htpp8z8tqPa7sRq8DSNHy/cUHhMar2ri3DjzDZn
oPpHZrZFrOEz4a+Z1zY2F26xU2pbjA0apPFWmW0Te/gc4ZaZ9zbxElwLznVf
5nhsl9g+fHmI34iP8UnLMsf7RWwONy6zLoA+gA1EUyCeQhtBI5mQec3hi7un
Xot9gt7aMfjq3kH/PS61r+4b9NtOqX0zekjl2DHplMzx8baxOeiVmW1ik8R8
FFs5R+cs0N8/hWcU5jODAn/FN6Mpnh34MVojGuA5gU9hyJYF/eSizHtllvBU
4VPhjqX1Gr43nHZMZk17aOB/aN0LAn/GZmA7bg/8sEnw7zzTZJ3bP/OzfpHY
l+8Z27+hsaK1ooGizeMDmiaO1/ANxPvoAcRw8zOvR7gXHGxOZk0VbRVNEu2f
eBw9BR99V2b9o2rsmPMG4eMS+9KmwvUT+0+4/4/qzyvNTy4M8Qf7hXdwq45t
jfxu0GOIh4ixZmTWd7aPHcPNypxjYb+RoyL3gkY6JvAdcg1fJvbte8X25ziP
fdTfCmfMrBmPDfuV3MW+aqerv4/mPl5aQ0fDQx86Rv1maD5cL3W+cKTueX7s
nB7x+Ztqk9UfqWNXFNZIl6bWbOYFfRMtjjX9cOH4DG2Lb47/3Jg7NkPzvJ/1
pfPnptYrJsLdcufe0FymCL+eW+uAQ8Nf38g9FxuHrdtG57fLrOcxH31lTGzN
Hv2zUoXzeFxzssZey61lYZOxzetSr0PWI7EWmuPK1JojWiR6B1ovPh89Dw10
RWrNBm0UfRJtGA6QBv0WrRaOgt67XdAv0YhvL6xvoZVgA9A7Pw56FxroLYU1
xkdTayxoj2iWjwsvjKxl1iusfaI5Pg6/LKytoik+UVjDfCy1hoy2ieb7QOp3
jhbcJnUegxieWP4ytaGxc6zoNUWF8yBoMmgzLwa+go3B1jwf+PTgwF/IwS4L
fIbc7N6FtRliFGJTcuZJ5hwEufR9C2s7xBxoQeSwjsmsr5HbIiczVc+4OXKu
hhzryhB/4J/I4eyl+SfGzu2gofXK/M359sSvUeA8cB9y3A8nzhmT+65cYd74
n8ap+V1S8zj4HFrYNLUJsXOm6J8f5M4dwHlv5Hvq/DtS6+OzC9cYFJlzfNQe
lBXOs6KBjQ3fF+0DzZn98X7uc6/Cfgh/lDs3DIeGS6Pvj4udk0KP25Bbm8fm
Yfu21fVvS62vzxR+L3cfG4s9gYOflJmvcr0qFc47c485jBdeW2jUS9CKUttq
bDba9ydB358b+M2nQZ8kp3Ev+yW3tobPxHfGFc7zE9MT23ciRo7N73+FO+jY
gNjfE33gObURkX0qvvXZ3NoXPhXfmlQ4z4+mgLYwKbXfxn+fInxv7lzWQWod
hDsSk8Tmo7+o/5u+R6b5zSKP/12aB8AH+hXWQ86NnYNHv/pP34nNz39T/5nc
WiMcAa6wh3Dn2Bxik/r/ltat0a/P1PhBOtY7tkb6PUS+wjopeulZhTklvvKP
xFxzNzgT/E2/awVahOacEns9o4e8nlpXRl8ezW9V6xVbM/9O/VMLz+Wc9sID
Cmtj2HRs+0+8j8g5TvbPAcI9Y2vyW9T/p7Qujz5/Rli/5AV5p+0La+poPOQD
6gs/nFsbPEKta+EYcYCu1UzP+Sj8C74cm1N3CfMP1/iRwicIj0rNs+HbJwn/
VZqnwdf6Yq80/9jYHPpL9RupHReb0xEfrxQ+QmNH8Y4K2wty34OFhxfOed2b
es2SC6up+a1ixwD4y17EvIlzcOTiiInRtdG3iZWrFbaVjN+l/lY4X+rfwO/t
o9ZBY93U9uNbF9ZGqTmh9mRxbm12f7W2GvsMGxfbB6OfYf/QbZnTRvih3LUA
h6kdL3xfbi23Lv6KeYW1YzSfqRo7pDDXJwa6NrdmC2+GP6PlNlbrFJvzfq3+
+6nzAOQDJuWumaDugHt20rVaFuYqaACzNX5UYe6ARjCLeEzzK2XWL3g+9lOZ
+RnbFebwcHk4U93CMfmTiWuKiNWpuVicOX6hFoMahE2pfwO1CWgmaCfrNP+0
0jUlv6Z+BmpNyCmStyF/Q66RnAh5L/JfQ4N/IHd/ps4/UP0GhXM/5CCpDaAm
hNoQ1tTOwV+gIbMn+pTOeZP75p3x7rgH94Ijk+8jRwRPhi+vDut3t8xrkrVZ
S61j5Bjvf7nX50b1m6ttE/wtOVT0kYqwPsmxpvj8wjUM1DKgaVIbQU6QGADN
Ae0B/0+ukXxilcBPyPOR7xuWB76WOj+1KvARcq6ZcFm4hua31N94Q+Bn5DzR
OJLCNR6/pObL1H5QY/Npap9M7Q01MRtTr0FqZcjZk7vHBmILqbGg1gKbh+2j
RoBaAWwAtoCcPJo++nx/9Z9ROyBzjuDswho6tQbYXGwv/rdPZp+L7yWn3Tuz
D8QXkvMl7w7Hgmuhd1DX1FbntlN7Qv0mmW0gtvBB4TqZ9yh7lRoKchrUm51c
hpqoxDV3XIMcy7TM+QdyL9TgzUhso6nNwz+SRyaHCv8iJ0meCw4HlyPnQN4W
jgvX5X2Ss0QPblf6fZJTRP9uX/r9k8NCb+1a+nt9EOL7bmE/kAND7z2h9H55
InO+CO2R/UXO6hn4UOn9RU7zWeGOpWsGqBOAg8JFydFRpwCHXRTsIXllcpJL
C2vqt2fOf70W/O3emX3OgeF7Xp85X/ptmI8Wj4Y2oHTMTuwO54f7N8FGRtYA
vlX/ac2ZG/TFo4WfFL5RuJ/wEeH7zUpsT3urv0btJuH+wq00/pTwnMQxyVHC
a0vrlacKHyu8WviGxDVzh+TOGaHxouEfUfj7kktjf51Sej3Uz2zTqbVBA6TW
BM3y4sC3yZlTz7BD4RoValUWR641JWaambgGEn+LfopeTA0KtXTU5FGb1zb4
B+wTe5UcAblwajip5aTmqWnu/TE/sf/uW1ozfSroMWipaJBrgv6EfaCmitoq
am6oFSRGo7aTmhtit0eEr02sNzfPXeNIrWObyLWb6NHoyWhcaF3sl6sS17T1
Kp2jJ6dBvn33wj4e/Ro9HN9P/PdrZA53Um79iPwAGgVaBfEauQZythMK53jJ
MRAT7BPiIWwbNRzEV8R/5EC55l+5+Sm1EdRcEP8Q3/As5JxGBn/NtyHnT3xD
PARXQWNCa4KfkwP/m5At8FdsLzUpywM/RquGk08NfBctjxoY+MPBwudEztH8
mDtexbZSE7Mi8OmzMtfwnJ47vuyeuZ6mX+54lJoB8p+XBr5Ozv4vjSPMEn+S
myFHPa5wzo6cDhpSi8Dn0QbI8cPviT/4LcTcp4R4AG2Gmozphfke3BqO3SE3
P4cLw4mHFuazcHE4+YWF41tqaNCYti0cL1JDwTuvWjiHTF0H9R3klolXeHZq
CmYHvg5Xxn5fXDgeJ5dEDpv4Hb6xbWa9gtpN+A2+8RCNd8R+a3xgZI4MV6bm
j1psaiKpBYSjw9V7Bb6LzzlO/bGpfRExALHAyYFvY/PZi9gQbElTXbd7bH6w
n87pX1iL7B2+JzVp1Aa3ilyrRk0y+ZTWkfMz1KROTlxDRq0qHB+uPzDEM9SU
TQ/7nVozfCDPMjm1b1yTO7dJbS/5cHwevoY9zl5/OneulJiJ2IkYgVjh7BB/
DCycG2QN/pG7JntU4ppZarXfz6wz4d/fheeU1m7gLHAX1iC5BzQP1malwloD
Pgpf1bzwWoMDw4WbldF/2gY+A9+xV2mugM/F91YuvFbwefi+pqW1DnwKvgWO
TGxQNTN37lw4FthR+M/SHBKuu11mbtmmNDdA66I+qW3p2gK0LuqHiNmI7eCc
cM9tMq8dONYlqfV11gP8Dp63Z2ZuDr+jPgB9n9xaq/AM6PMdIvMTeAo1zvOC
/8BeEwMRC50VOX4kh0IuhRrbNrk1e7T7y4lpSmvAaMHErEeUzq+S20VTOqq0
5kk8vZB7lq7BPzlxjTa1+dQYX5a4pnKHwLd5N8RYxxXW7NHuJ2m8ZWm9EO0U
DaB1aU2xV+IcHVoj8QFc4M3Ar6lBQtdE36RWBZ+Ob18X+Obrhbk5Oc1puW0Y
uVs0AmwbNd+9E2uY1IKjsaK1Ur/UCv6S2/aRE0GPpiZ0SOKacWpF0cTRxomh
Dy+tsaO1oxkcqn63wrEh8RXxXvfCsd0RgU+fVNoXkbuhXoV4DltSJaynnqW1
TDTRZeHdsb7QX6hfgdPzvUen5vrEmMSaJ0WOf1lXrC/0KOpnWLes32ZhffHN
4RXU0bMWyAmQG6B+6WDefeFcD2sQPYD/8eAfUhpF/t8PYg5+26WpY5GTC+eC
OgY+BEcmthqemjvDUeEK+GB8MTEysTK/gXiuQ2nuyDfl23YqzfXQoqnfop6J
ei5qlj5JHBsR+8NvsH+sb/zBlaljf+rzsI3YyGa6RoPSsfSxmetDsHf4i6tT
ax17ltbO0ODQ4qgHwxbCD+GJ1POxd9AYmhMHZM7Fnhuu2bi0L0SjQ6trUTpW
hOPAdfYuzXXgOHAdNDm0t66ptTr+f4G9R41jX13j5My5WmwU9ZtNdM6UyBof
Wh/13BMixxPEFdRvj48cTxBXkA/CtxD/EQfib9BWLk+tFdUqzZ3gPHCfvPTa
JkdBrgJNCn97ZGqtCs0LPeaI1PZ8j9LaM/ciloGDwWWbpuZmrCW0MzgA9XBw
QLjwnqm54b+Fa286Bb2oOfw2coxNrJ2W1pPIudwa9hraGT6Y+ridS3NBOCD3
Ix+HfyJ+I46LS+9tcizkWqhHwfcQzxHX4Y/w79NS+2dsHVod/Iz6NPYy2hgc
j/q6BM4YOSdEbmhi7lpFcibUi52eWeuEQ1EPTH39uMh6LWti99K1GWjKaMu7
FM6vwEHgIjUL5+/RANACyPcRy/E/RPUy215yA3Am6lOx1Wj7cCTqYckHsveJ
34njaxTOf6ExoDW8lZu7wmHJn70d7CE1MOTXji9dm0HujvpJ6gOpp6Qm8FPN
qVNYC0GTQZuhXpD6LWoCN8LzS9eikAuknguOBFeC88J938nNHamhIV/XpXTt
D7lE6o/IaZALgVPCLfEN5D7gZNR/dsuci4EjUu9Zt/R6ImYidqpfev0RgxGL
wSnhlnBSuGlDHbs0soaPlt+otJaP5o/2X6907EVMtib4IrRmODX14vgGtOn/
8uGpOSJcEQ4OF9+tdOxHzEbsVqd0rEYMSCyIRk7uoV1q7Zz/98LWUjN6XOb/
l4JPkYNqD2coHZsTgxGL8f9m8ClyGB0y23u0zvGptcZd1fpEjhGJFclpkMtq
mzrXgQ3FlpLfoxbnyMLaCDVCM0M8+VPqeivw+ty+kBwC9mn/0usRTZP74V/x
tdSUon+hKaAtEC8TXxLDEcuNyKz9oGfje6jB/LSw/ktelvwstYJrC8fe1EhP
yJ0/ofaOmmj0GjRMtExyztS/olcSS1PDSXzLmmXtkn+mNoo1yFokP/12+L38
Nmpq0YPQmNCayElSjwNHg6uRn6QWlJiA2IAcZe3wfPw2ajjRB9BD/9MyNf5J
YT2SPCn5Ump10Q9fSJ3DIl5bm/t7o/knoR4arY89yv9PUCNKXpz8OLVC5Jeo
paVm/fnCGvqUxP/DhbY+I3ctLnuQ+jk4JdySfCq1sQeUtgfkBLD3xF8fpb4m
+So0VbRVbBD1leRnyKVQA/RN4fj45dSaI/E8+Upyj9S4fl1Ys0e7J8dM/Td6
LloQNeXoaYeU9pfkEPCvPxXWCvk/lT8Kcx64DwksasXQ+9EGqIH9MsTTn6Re
A+TP4ETwXPguXOnV3P6SHBT7CX0XrYmaavRVfDx+Gf9MLgRNCW1ps9rH6r+S
23+SA2R/TM9d+4zNo57u+ty10XAO6tXIJ7Iv2Z/kitGX0a6ogUZ/RINGi6YG
gnpk/oeseeKaeeqnyTe8lDqHSXx/UGl+Qo4CvkJMAUeD/3+e+3+s9kpc40X9
LDYSW0n9BbWb/I/QHol9Bv9P81DgW9TkbSwckxGbUTNG7dj/ASC6pJo=
"]],
Polygon3DBox[CompressedData["
1:eJwt13e0lcUVxuHDOfecG2oAAYN0BKVDAipd6VWEKyAdRFQSG5GIwYaUiBTB
EgIEEQtSNEQFUUMREKKAtIXExJWlS0WjEURQ0RhR82wnf7z3zv7Nu/d8Zb6Z
OfXG31RyYzaTyeyiPNUozmRa5TKZFeB4cStwQCGTqVCUyRyiH0plMkfFi/Av
tF/FTvMPlHcOtdR+RO5ymiH+GTXF/igeo14zed2xg9hyua+qcUcMjP3AM5xG
0ArxFuM8rX+feB9/XXEOL9aegrWU9r0am/G1fK9je/XVFlfja6y9BBvF19gY
N+PX8HWUs1BfB55J2ASsPXYf1i6uA/tG3kSqI/eUvqp4I/2LsZFYE/VGY7fr
u59eUuMW7Hu5n///HuJeJvL0xcfrb8s3R40LsMrUQPshngdpurgdX1uqpd1G
3yz/byyk3HZy52EXYUVUTjte3E30hPhsaoItFY92fU3VeVfud3IPyM1SD3EV
vvP4FvEN5qvPtxVfx7cf26+vvng37cAOY+9gLcRl4n1q347dQWvFHeS3p5ra
rfXN9P8P4i/lvmbMr7BB2FnUUPv38i43bj2e6lgzbBk2FmuOvWmcf8p9C/tC
X8dCut/yuTRmjH27eCdvx3gexhjHfz1fL6wnTdQejf3S/3voNu0SvmX8Z/Lp
2Z+rPVute2m9+EKam0vPOZ53vLNd1CmX3luweBdD417EVaiXa64anrgWqq3v
Av7f+X+xuDPVidrYPf5fQdXk1aHe6jXIp2+mRS7NgZgLm2NeUG/sxbg+Ywzn
+w/dj7WWO0ruta7lH9hAbBQ2C7sf6yH379ha7DA2k+cV6hDzDhuD/YqvJ99b
2FPYEWwWz7/xvDHfwAbTbPHH8fyxw+JudKt4Hk2TMzyeAU0VH5TfS72+4pv1
3YU1NEYf7CX5c9zHMJ5TNBs7n28g31i+tnzzc+kbjG+xH8+BeJdYH2xSrBF8
7fkW5NL3G99xf549+E7tN4zxrr5W4m54V6rH3xa7tzjN3eq59L7jvU8rTmtO
Jpe+ofiWJotLhbBJ4vN0f22sy9XsbIzK2lP0faB2cXzD2tP5OvGVwwbxdeKr
xFea+oq74JdQXf6LYs753y/uma8MT1E8Q3FFvI7+BeoNUK+mnCxWwG7BWmA/
8P4k5h82A+uMleV7T/736h3UX4i5Jf4NTcQ6ix+IZybv/UJav2MdL0f9xaXx
KvHdqnexeuXV+wWV8DXmaUQj4tum6XzNYm7oa83TBpuJNceGYm2wsrEPYHPU
665eZaw8VhObh/XEqmCVsLrYQuwyrBZWAauFzcf6x16E9cmn7zu+8yY0MtY+
qsE3l68H31k8vfNpbsccbxPfCM9PqTbffXyX8p2TT9cd19+Upy4N51niOczH
JohX8ZcSn4dfqr0lm+Z6zPn1cktj12HnqpfNp3ke872f3EX6OsU9YHviHRWl
fSn2pyq0Ld4lthx7TlyIa8TuUu9C9Qrq3R3vLuY232J9nXmW45/GcyI486E/
P8ev1H8IewG7Od4bdi32Zjbt59Oxh+l43H/2x6me+UBuU76hgr9ii4y10pit
sHHYQWwj3+R4l/iL2A1yHuJ7XNyEbwi2K5vYY9jrvF2wJ+M7kjtYvC++QWxV
7FHYkFjbqT/2HHYXNlq8n7phq7FJ2FBxs1grsVexxcZYXUhrW6xxo13Lo/ou
KU77bey7C7EFsbZhD8aaj40RP87XBTufBmhvjX1W3308a+R+Kx5IZxn3C/5H
sBPiQdl0FvoXVoP3Nbl3a6+Wu0k8g6ZoD8CW6rtY/UclnJQ3JJuWlY/1PRZn
pDgvUGnsk7im2Btjj6Yy2DGsWuy16tyqvULd58UtFBmB7eFbzTdBXnNsOLYb
W4VdjTXCBmHb41lh47DGWAm2A1uCjY3njh0PZowTsVdgT9Dp2HupLN/xWLeM
vTHmeKwbfCvEn8Rc5TkS627cs/iRQuoP3xVxrhE/W0hzO+b4s2oUxC2NO1J7
r/w1xrjGmKtiPxNfTRWwz4rSPhX71ZoYl8bKO4L1lftMnDf4RopX0GdxhiDl
Mx/xPol9Lb6KymMnitK8jPkZc3etGtl4b3yHsFWRE+cGY6zEvpJ3JZWT+ym+
oZDeQ7yP9XKLxfV5O2uv45vKN0je3ljbsZXYDdjl4rW8S+T+Wu6f9XWVty2f
zgCvFKe9IPaEp+i7OINRVbmn4zqxM+ISqoJ9ib2cT2eKHcXpPBHniqfjnMkz
lKrxfVWUzhJxpqitXYuG8W/G6sfZg68bX13xuXh3bEM27euxvx/Hp2E15fWM
fR3bnk/71c7itJfGnro1n86l24vTeSfOPX+KfQobo1Z1Y3yjxpZ8OgtuK07n
2TjXbqAy2PV8DWLbFe+ObyZy/B9Al9EC+sQ1vKzO1jh3qbEw1j9sW3yDdCW2
LPa3ojQnY24eK6Q5HXN7O3bMWP34nsHy2hN4ahrrjL51WA4bh52D/TfeFVaE
jcdqYN/G+htnHfWu0l4Zi6f4+VgXY03kawgVxRkk3gv2BHY9VhL3QHdiNeLc
rcYwuXOwd7Q3YO/p6+X6LqPPYz3FTul7KN4v79I4P6u3RV9l8ZOFtFbHmr0J
q1BIvzVOia+gYfGbS62/ye+n/1nxna5llPhS/ETMP2N8psYD2MbYg7HJfE34
Sos/0D5KX+KNYg77P0DuyZgHck9iD/KtKaR1Odbnzfoqiufi78baxfc+1lve
X7Bq2lP5WhujYj7tIfFdxv7xkr5ysfbl0zltV8xN7R70Id2aS2epOFOV8DWn
t+M3TlH6bRK/UT7im5pLZ7M4ow3GNmFnY7cZo41xK8UcULsCdid2QfzWxd6O
swC2CZuPXRXnDb6j2MaidD9xX121r9Pu4v+a+N2TTb9Z47frw9gB/m7yXjD2
b8U79S9T70Xx/wD038iL
"]],
Polygon3DBox[{{1779, 550, 549, 1238, 948, 1544}, {1431, 538, 560,
1239, 1015, 1874}}]},
Annotation[#, "Charting`Private`Tag$251157#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {},
{GrayLevel[1], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJwtlElPVFEQhe/rfv26Nxo2Rlm2JgzGIdEGEuMCNXHcOfwB41pj4lp/ALB3
2KDoL3AeNg0uHADFaaGMQWhkoUIYGhy/k3MXlap7XlXdqlN1X/nshZPncyGE
c0geeZaGMIKe59CDfRf7OfbWJITZxN+6wfcRNI7ei+4Fr6CbM/tfLoTQin0P
+wp2BbuK3YU9hO9mpJ/zKvh+4hbQj8n1BmyWu8Y478bnL/YA0obPqL6DbwNv
R3cgA/j3kHMFux2fn+jFYggfiWnBvoQ+AT5F7CtkF7F/wNbQG3K+YzhzbzXw
cimEGfRxcrzEfyf4L851fA7iv4h+nTrun+rK3Ec3NTwFf4s9B347Nf4JuxGf
O9gX8bkFviUx3puahw/Yw4lx9XMf/406o8vor4nzqidxq5m8QHaAr4F1pfbX
jJaJ2UOd09zVnzmneOjM7P9ZfWTmYRTdl3ouquFQ5Fzcq67BOKMDmXn4gr6J
fyf5J9APUteneT1KzaF6f5J6Rtqfjjgvze0h+GFiJxWbuGbth+paQcbFXWL/
d9gzifOr9wXm8Z58TeTZzox+Y58BqyW+Vzs5R+6xYE40Q8WqxvW869c8GyO3
4li7NRL3XbuwCVnnW2vJMaeL5k07eRU+f8Q5TsfdFrfi+Chxy9jHcs6jHOKx
OfJYzcyterpRMP+693rB3Kq/awXfr/ip4P40I+3sEj5HwE9Rz7ecedJOKkax
4qEt7rB2uRrvbYpzriOT8T7dq74b4l16B+pNPapf8bSKTHAeTB2nPdc7Erc1
Yr4X/Sa1n0uqKe/3KK190e7X4v9Ce1HPe8ba2fmcc+sNqg7xpPek/4L2UHES
2X1xLg2Rk0p8D0PolpLzipP/Rv6ypQ==
"]], Polygon3DBox[CompressedData["
1:eJwtlMlOlEEUhYuuv6tZuRXjCk2ENg7RqDjEAdSNbozRF/ABNCau9QGEvcMG
UZ9AwHEDulCawXmhAga0aVioEIUGx+94/sVN31N1+w7nnvqbz5w7ebYQQjiB
ZdiuFML6hhAeAL6XQhgBN4M/R34bQ1gAT4EP86c6/tViCEvgzVg7eDfnd8jT
B96Dv4Gz1fjd5Jsn32XiPzU45w7uzoN7iV8FXgP+ohhie8HfwNPcbyfPNuwr
eCJzXuXvxJ/BX4sdxy7Q40fOjuJPc38Xvyk5t3Iq91/FUK/OWYWzLvK/DJ65
jdg/3D/ivAYeB18rOnYL1gE+QO4B4ivggwX3qF7b8BfxrxO/DN4qjpJn1uxD
4HnwFe4X8Tdhh8Ab4fSh5gB/AHdyX8Vfh+0EXwI/pl4TuAzuw7rxbwfzpZzK
vZ/6S8m/wupRvR7BxoL5EC+nSsb3qVmm9nJ0LxOc1bj/Gb3LSfAs+En0Pntz
Dn9HcyEO5wruWb2/COanxv3z4B3fI/59cr6V6HrSTwf/a8eO0Us1uh9pqj8z
5+JeOxF/4lW11YO0dbrk/OJM3KmeuFIPOpNGb2Tej7QrDUvL4lTczkT3pf6k
xQXue8DD4ItF60O7W8GGOW9ttI7E37tkPqSnfqyL87lo7ahn6eZt9K5GsVuZ
5/v/fhrM+evo9zCC3czM/zjz/AA/zaw/6VKak/bEt3ahNzbE+WRm3Wk+zame
1Js4lJ7GkmtLM9LzaHKtwWA9ab/atTT4LDNHlVwveo/al3oVx3rPmkf/FT89
eT3ppR7Njb4DU3l9aa01eX7FilvNq9xD+TdAGhAPqqFa4ly7fRMd/4rffeTZ
W/D7HkzmWt+Ich6vXsRhS/I+xaNm1KwDyd8G5WzJ35P6n43WgvYlrVbzb5z0
Kz3/itbTP1CezsM=
"]],
Polygon3DBox[{{1876, 1018, 1225, 502, 1432}, {1777, 572, 571, 979,
2033}, {1877, 1020, 1226, 503, 1433}, {1574, 979, 1164, 437,
1729}, {1866, 577, 576, 1185, 2081}, {1507, 165, 416, 563, 1781}, {
1875, 583, 582, 1207, 2088}, {1576, 981, 1165, 438, 1730}, {1776,
566, 565, 963, 2030}, {1866, 997, 1206, 482, 1778}, {1590, 1001,
1188, 462, 1743}, {1249, 585, 501, 221, 884}}],
Polygon3DBox[{{1875, 1016, 1224, 501, 584, 1780}, {1560, 963, 1244,
564, 416, 1717}}]}],
Lighting->{{"Ambient",
GrayLevel[0.8]}}]}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwl0jtP01EYB+BToaK1tiBGKWJL5WqlKGEw8bI6eI0aUpVwDyEwyMCCo5Ps
JvoN/AZ+A1cnAa/FS8UFFketDTwnJv3led/ztuec/tvi7PK9x4kQwnM5diCE
WGc4oqg1h9Cq/80C9zjMdDKEqzzFmyxxnJd4WZbUd/mED7nGab7kPF9xha/5
lG/49WAIu8487ux3+ix39FWu67e4Ed/HTX7je37nB/7gR9b4Uz6pt/mZv/iF
19kd13yPC+yUhnN7ORw/Y/08C1KWf2Y59si5uL/5EPNSkrp5B8/IYLyH+Vme
lgH5a36SRama9bFf/ljv4gl54V6TnsEzVrjKO7wti+qLfMRB3mCOV5himQ37
5nnNnqOeV7s9s/q2eH/9AjPxufMo55jmDI9wiilO8DDHeYgPWJEW9RhtH+4z
GX9bNsd7som36BXeWqwn/v+P9gF/oj8P
"]],
Line3DBox[{1393, 165, 1775, 561, 562, 1781, 563, 564, 1244, 565, 566,
1782, 567, 568, 569, 1246, 570, 571, 572, 1783, 573, 574, 575, 1247,
576, 577, 578, 1784, 579, 580, 581, 1248, 582, 583, 1780, 584, 585,
1249, 587, 539, 743, 221, 744, 222, 745, 223, 746, 224, 1228, 506,
533, 225, 528, 505, 1435, 210, 1421, 195, 1407, 180, 1393}]},
{GrayLevel[0.2],
Line3DBox[{1251, 1604, 747, 1250, 1891, 1436, 1252, 1892, 1437, 1253,
1893, 1438, 1254, 1894, 1439, 1255, 1895, 1440, 1256, 1896, 1790,
1949, 1257, 1897, 1441, 1258, 1898, 1442, 1259, 1899, 1443, 1260,
1900, 1444, 1261, 1901, 1445, 1262, 1902, 1446, 1263, 2037, 1605,
1760, 1447, 1606}],
Line3DBox[{1265, 1791, 1950, 1264, 762, 1266, 1903, 1448, 1267, 1904,
1449, 1268, 1905, 1450, 1269, 1906, 1451, 1270, 1907, 1792, 1951,
1271, 1793, 1952, 1272, 1908, 1452, 1273, 1909, 1453, 1274, 1910,
1454, 1275, 1911, 1455, 1276, 2038, 1608, 1761, 1456, 1609, 2039,
1607, 1611, 1457, 1277}],
Line3DBox[{1279, 1794, 1953, 1278, 1795, 1954, 1280, 776, 1281, 1912,
1458, 1282, 1913, 1459, 1283, 1914, 1460, 1284, 1915, 1796, 1955,
1285, 1797, 1956, 1286, 1798, 1957, 1287, 784, 1288, 1916, 1461, 1289,
2040, 1612, 1762, 1462, 1613, 2041, 1610, 1617, 1463, 1616, 2043,
1508, 1619, 1464, 1290}],
Line3DBox[{1292, 1799, 1958, 1291, 1800, 1959, 1293, 1801, 1960, 1294,
789, 1295, 1917, 1465, 1296, 1918, 1466, 1297, 1919, 1802, 1961, 1298,
1803, 1962, 1299, 1804, 1963, 1300, 1805, 1964, 1301, 1878, 1965,
1621, 1302, 2042, 1614, 1763, 1615, 1303, 2016, 1509, 1618, 1510,
1304, 2017, 1511, 1620, 1512, 1305}],
Line3DBox[{1307, 1806, 1966, 1306, 1807, 1967, 1308, 1808, 1968, 1309,
1809, 1969, 1310, 801, 1311, 1920, 1467, 1312, 1921, 1810, 1970, 1313,
1811, 1971, 1314, 1812, 1972, 1315, 1626, 1973, 1880, 1316, 1879,
2092, 1764, 1622, 1317, 891, 1623, 1513, 1318, 2018, 1514, 1624, 1515,
1319, 2019, 1516, 1625, 1517, 1320}],
Line3DBox[{1322, 1813, 1974, 1321, 1814, 1975, 1323, 1815, 1976, 1324,
1816, 1977, 1325, 1817, 1978, 1326, 813, 1327, 1922, 1818, 1979, 1328,
1819, 1980, 1329, 1632, 1981, 1882, 1330, 1627, 1765, 1982, 1881,
1331, 1843, 2044, 1628, 1518, 1332, 1844, 2045, 1629, 1519, 1333, 901,
1630, 1520, 1334, 2020, 1521, 1631, 1522, 1335}],
Line3DBox[{1339, 1923, 1468, 1337, 1924, 1469, 1341, 1925, 1470, 1343,
1926, 1471, 1345, 1927, 1472, 1347, 1928, 1473, 1349, 1929, 826, 1351,
1641, 1767, 2093, 1474, 1642, 1634, 1645, 2049, 1475, 1644, 1524,
1647, 2050, 1476, 1646, 1847, 1930, 1649, 1477, 1648, 1849, 1931,
1651, 1478, 1650, 1851, 1932, 1653, 1479, 1652, 1852, 1933, 1654,
1480, 1359}],
Line3DBox[{1358, 1529, 1639, 1528, 2021, 1357, 1527, 1638, 2048, 1850,
1356, 1526, 1637, 2047, 1848, 1355, 1525, 1636, 2046, 1846, 1354,
1845, 1992, 1635, 1523, 1353, 1883, 1991, 1766, 1633, 1352, 1884,
1990, 1640, 1350, 1989, 825, 1348, 1988, 1825, 1346, 1987, 1824, 1344,
1986, 1823, 1342, 1985, 1822, 1340, 1984, 1821, 1336, 1983, 1820,
1338}], Line3DBox[{1361, 1826, 1993, 1360, 1934, 1481, 1362, 1935,
1482, 1363, 1936, 1483, 1364, 1937, 1484, 1365, 1938, 1485, 1366,
2052, 1655, 1768, 1827, 2051, 1656, 1643, 1659, 837, 1658, 1530, 1661,
2054, 1486, 1660, 1531, 1663, 2055, 1487, 1662, 1853, 1939, 1665,
1488, 1664, 1854, 1940, 1667, 1489, 1666, 1855, 1941, 1669, 1490,
1668, 2056, 1532, 1670, 1491, 1367}],
Line3DBox[{1369, 1828, 1994, 1368, 1829, 1995, 1370, 1942, 1492, 1371,
1943, 1493, 1372, 1944, 1494, 1373, 2057, 1671, 1769, 1495, 1672,
2058, 1657, 1675, 1830, 2053, 1674, 1533, 1677, 1831, 2022, 1676,
1534, 1679, 847, 1678, 1535, 1681, 2059, 1496, 1680, 1856, 1945, 1683,
1497, 1682, 1857, 1946, 1685, 1498, 1684, 2060, 1536, 1687, 1499,
1686, 2061, 1537, 1688, 1500, 1374}],
Line3DBox[{1376, 1832, 1996, 1375, 1833, 1997, 1377, 851, 1378, 1947,
1501, 1379, 2062, 1689, 1770, 1502, 1690, 2063, 1673, 1694, 1503,
1693, 2065, 1538, 1697, 1834, 2023, 1696, 1539, 1700, 1835, 2024,
1699, 1540, 1703, 1836, 2025, 1702, 1541, 1706, 856, 1705, 1858, 1948,
1709, 1504, 1708, 2066, 1542, 1712, 1505, 1711, 2067, 1543, 1715,
1506, 1714, 2068, 1544, 1779, 1785}],
Line3DBox[{1381, 1837, 1998, 1380, 1838, 1999, 1382, 1839, 2000, 1383,
2069, 1718, 1719, 1384, 2064, 1691, 1771, 1692, 1385, 2026, 1545,
1695, 1546, 1386, 2027, 1547, 1698, 1548, 2070, 1387, 1549, 1701,
1550, 2071, 1388, 1551, 1704, 1552, 2072, 1389, 1553, 1707, 1554,
2073, 1390, 957, 1710, 1555, 1391, 2028, 1556, 1713, 1557, 1392, 2029,
1558, 1716, 1559, 1786}],
Line3DBox[{1395, 1840, 2001, 1394, 1841, 2002, 1396, 1731, 2003, 1886,
1397, 1885, 2094, 1772, 1720, 1398, 965, 1721, 1562, 1399, 2031, 1563,
1722, 1564, 1400, 2032, 1565, 1723, 1566, 2077, 1401, 1567, 1724,
1568, 2078, 1402, 1569, 1725, 1570, 2079, 1403, 1571, 1726, 2004,
1859, 1404, 1860, 2074, 1727, 1572, 1405, 977, 1728, 1573, 1787}],
Line3DBox[{1409, 1842, 2005, 1408, 1744, 2006, 1888, 1410, 1732, 1773,
2007, 1887, 1411, 1861, 2075, 1733, 1578, 1412, 1862, 2076, 1734,
1579, 1413, 987, 1735, 1580, 1414, 2035, 1581, 1736, 1582, 2085, 1415,
1583, 1737, 1584, 2087, 1416, 1585, 1738, 2008, 1863, 1417, 1586,
1739, 2009, 1864, 1418, 1865, 2080, 1740, 1587, 1788}],
Line3DBox[{1759, 1758, 2010, 1890, 1422, 1745, 1774, 2011, 1889, 1423,
1592, 1746, 2012, 1867, 1424, 1868, 2082, 1747, 1593, 1425, 1869,
2083, 1748, 1594, 1426, 1870, 2084, 1749, 1595, 1427, 1871, 2086,
1750, 1596, 2091, 1428, 1597, 1751, 2013, 1872, 1429, 1598, 1752,
2014, 1873, 1430, 1599, 1753, 2015, 1874, 1431, 1789}]},
{GrayLevel[0.2],
Line3DBox[{589, 748, 1891, 590, 762, 617, 1954, 775, 630, 1959, 787,
642, 1967, 798, 653, 1975, 809, 664, 1984, 820, 1924, 675, 831, 1934,
686, 1995, 841, 696, 1997, 850, 705, 1999, 858, 713, 2002, 865, 720,
2006, 1189, 1190, 872, 727, 2011, 1191, 1215, 879, 734}],
Line3DBox[{591, 749, 1892, 592, 763, 1903, 618, 776, 631, 1960, 788,
643, 1968, 799, 654, 1976, 810, 665, 1985, 821, 1925, 676, 832, 1935,
687, 842, 1942, 697, 851, 706, 2000, 859, 714, 2003, 1166, 1167, 866,
721, 2007, 1169, 1192, 873, 728, 2012, 1003, 1216, 880, 735}],
Line3DBox[{593, 750, 1893, 594, 764, 1904, 619, 777, 1912, 632, 789,
644, 1969, 800, 655, 1977, 811, 666, 1986, 822, 1926, 677, 833, 1936,
688, 843, 1943, 698, 852, 1947, 707, 1144, 2069, 1145, 1237, 2094,
1147, 1168, 1148, 1171, 2075, 983, 1193, 984, 1195, 2082, 1004, 1217,
1005, 736}],
Line3DBox[{595, 751, 1894, 596, 765, 1905, 620, 778, 1913, 633, 790,
1917, 645, 801, 656, 1978, 812, 667, 1987, 823, 1927, 678, 834, 1937,
689, 844, 1944, 699, 1125, 2062, 1126, 1236, 1128, 2064, 1146, 1129,
1150, 965, 1170, 966, 1173, 2076, 985, 1194, 986, 1197, 2083, 1006,
1218, 1007, 737}],
Line3DBox[{597, 752, 1895, 598, 766, 1906, 621, 779, 1914, 634, 791,
1918, 646, 802, 1920, 657, 813, 668, 1988, 824, 1928, 679, 835, 1938,
690, 1107, 2057, 1108, 1235, 1110, 1127, 2063, 1111, 1131, 949, 2026,
1149, 950, 1152, 967, 2031, 1172, 968, 1175, 987, 1196, 988, 1199,
2084, 1008, 1219, 1009, 738}],
Line3DBox[{599, 753, 1896, 601, 767, 1907, 622, 780, 1915, 635, 792,
1919, 647, 803, 1921, 658, 814, 1922, 669, 825, 1929, 680, 1089, 2052,
1091, 1234, 1093, 1109, 2058, 1095, 1113, 935, 1130, 2065, 937, 1133,
951, 2027, 1151, 953, 1154, 969, 2032, 1174, 971, 1177, 989, 2035,
1198, 991, 1201, 2086, 1010, 1220, 1012, 739}],
Line3DBox[{603, 755, 1897, 604, 1952, 769, 624, 1956, 782, 637, 1962,
794, 649, 1971, 805, 660, 1980, 816, 671, 1990, 1076, 1077, 827, 2093,
682, 1078, 1096, 837, 692, 924, 1114, 2022, 846, 701, 938, 1134,
2024, 854, 709, 954, 2071, 1155, 861, 716, 972, 2078, 1178, 868, 723,
992, 2087, 1202, 875, 730, 2013, 1013, 1222, 882, 741}],
Line3DBox[{605, 756, 1898, 606, 770, 1908, 625, 1957, 783, 638, 1963,
795, 650, 1972, 806, 661, 1981, 1064, 1065, 817, 672, 1991, 1066,
1079, 828, 2049, 683, 914, 1097, 838, 2054, 693, 925, 1115, 847, 702,
939, 1135, 2025, 855, 710, 955, 2072, 1156, 862, 717, 973, 2079, 1179,
869, 724, 2008, 993, 1203, 876, 731, 2014, 1014, 1223, 883, 742}],
Line3DBox[{607, 757, 1899, 608, 771, 1909, 626, 784, 639, 1964, 796,
651, 1973, 1053, 1054, 807, 662, 1982, 1056, 1067, 818, 673, 1992,
905, 1080, 829, 2050, 684, 915, 1098, 839, 2055, 694, 926, 1116, 848,
2059, 703, 940, 1136, 856, 711, 956, 2073, 1157, 863, 718, 2004, 974,
1180, 870, 725, 2009, 994, 1204, 877, 732, 2015, 1015, 1239, 1243}],
Line3DBox[{609, 758, 1900, 610, 772, 1910, 627, 785, 1916, 640, 1965,
1043, 1044, 1233, 2092, 1046, 1055, 1047, 1058, 2044, 897, 1068, 898,
1070, 2046, 906, 1081, 907, 1930, 1083, 916, 1099, 917, 1939, 1101,
927, 1117, 928, 1945, 1119, 941, 1137, 942, 1948, 1139, 957, 1158,
958, 1160, 2074, 975, 1181, 976, 1183, 2080, 995, 1205, 996, 1242}],
Line3DBox[{611, 759, 1901, 612, 773, 1911, 628, 1035, 2040, 1036, 1232,
1038, 2042, 1045, 1039, 1049, 891, 1057, 892, 1060, 2045, 899, 1069,
900, 1072, 2047, 908, 1082, 909, 1931, 1085, 918, 1100, 919, 1940,
1103, 929, 1118, 930, 1946, 1121, 943, 1138, 2066, 944, 1141, 959,
2028, 1159, 960, 1162, 977, 1182, 978, 1241}],
Line3DBox[{613, 760, 1902, 614, 1029, 2038, 1030, 1231, 1032, 1037,
2041, 1033, 1041, 887, 2016, 1048, 888, 1051, 893, 2018, 1059, 894,
1062, 901, 1071, 902, 1074, 2048, 910, 1084, 911, 1932, 1087, 920,
1102, 921, 1941, 1105, 931, 1120, 2060, 932, 1123, 945, 1140, 2067,
946, 1143, 961, 2029, 1161, 962, 1240}],
Line3DBox[{615, 1025, 2037, 1026, 1230, 1027, 1031, 2039, 1028, 1034,
885, 1040, 2043, 886, 1042, 889, 2017, 1050, 890, 1052, 895, 2019,
1061, 896, 1063, 903, 2020, 1073, 904, 1075, 912, 2021, 1086, 913,
1933, 1088, 922, 1104, 2056, 923, 1106, 933, 1122, 2061, 934, 1124,
947, 1142, 2068, 948, 1238, 1245}],
Line3DBox[{733, 878, 1214, 1213, 2010, 726, 871, 2005, 719, 864, 2001,
712, 857, 1998, 704, 849, 1996, 695, 840, 1994, 685, 830, 1993, 674,
1923, 819, 1983, 663, 808, 1974, 652, 797, 1966, 641, 786, 1958, 629,
774, 1953, 616, 761, 1950, 588, 747, 1024, 1229}],
Line3DBox[{740, 881, 1221, 2091, 1011, 729, 874, 1200, 2085, 990, 722,
867, 1176, 2077, 970, 715, 860, 1153, 2070, 952, 708, 853, 2023, 1132,
936, 700, 845, 2053, 1112, 1094, 691, 836, 2051, 1092, 1090, 681,
826, 1989, 670, 815, 1979, 659, 804, 1970, 648, 793, 1961, 636, 781,
1955, 623, 768, 1951, 602, 754, 1949, 600}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJztnWVYVVsX703sBuzARAEDO3Cq2KJHsQUPCCa2iCIWFgq2YHeiGKBSAjKQ
FgukO/emWTYm3u175rgflnc8sI7wnnPue/zye1wPz95rjTnniDXHf241k5X6
C6pUqlSpe81Klaoq6GLXRM8LjgAy7oNOzLBvAjvk3vrrotcnAFmnftepHb4I
7PO5Y3suHLsAyNHn56xZUCywj6+D7lrWvwZI1zejLUJfCWyUgdywxW+3Aenu
7XWolUxg89xOzrllfh+QOiOfJB0KF5jRiZbe/YMeANLp8sGzB28JzL2eQc0z
VR8BcnVNE8P3ywXmcNtP13VGMCBz9UZPOFJFYBudA4fOrvcMkFtTnbfsnFTE
bCeaH/t46iUgO4+Mt7yuUch2Xwv5entcLCAzqpvLWqzKZ/0/Brxx1kkCZLUB
WpadKueyKdU+zb9mlQbI5BNWtV8Uyljr3odGOW7IABH/dvZ043Z0+0V77uZ2
3F1Ge/bjdkRWJ+yZUoo9qx/JCh/3JROQacFaaXVqpvzPzc+KsmcKt2f/WTsm
OlSVAdJ11eVVWd6xFW5PD25HD5E9j3I7Hv1Fe9pwOyLTy3m9U/YcwO2IvM/t
meQ8eUOfWzJAHvyoV7nagpf/2pPbU4nbUUm03sX2dCXsuZ/bM2jQO0uvxnJA
Htkb8aa/+tNyW+//dHtS652an4HcjshD3J7VtkUu0P5NDsiO2sO1Q0yCKjwe
/dPtSc1Pyp5fAuWP+62RA3J6ow2nFmj4VXg8+l+zZ87ZiYdH28gBWW9Vx5d1
TD3/tWc52bMOt+fA9TXc7h2WAzJ+eNdGzwzvlVv++U+351duR+SMUuYnZc+0
jtU8tU7IATl6/bXcqhdvVlj++U+3Z/0/ac9K/89/ryo8n/9fsyd1vazr/c/W
R2XNP/9b8aii7Uld/2/XR/v/ZP5ZXvGoou1JXZf6PuTvEt//6vkp9To1D6XO
z/KqpyqqLuvAx/Gvmid/l/mJ672i7qdTOeVvsXy9/F3i+J9d138XO5d3HvJP
H5fy8pPl9b7onxJfKipv6VBOeUvsXxxnqf0v87AprXpcOArIGh+ur5n1VSDz
HDMdN5dL4zMB2e/bkDu9HqSR+WR5fc4mnbyqI/dnAbKz+fbwx8EJFf751PXB
keYBwjwZIK/faBeySoj65ftJK+V+NvL/byzj/VDXXZrZH60rlwFSu0kby/ut
wiXfP1Xniu+zC3H/XYj7v0Hc/41S7p+6HvCyd8NqfeWAXHcp8szBA6EV9rxS
x+vPPq8z/z+ydynP68//j1zPr6fPka1sZSoHZFZu17E7Tvn/Y+xD2YG6TtlB
qn2o6zd3pK27slkOSJmsoMVnVZ9/7VnO9qSu33dIK368Tw5IH8c+Zo27uf1r
f8L+csL+csL+2YT9s0uxP3W9ZqtGgxcclQNy2/icB8MTncstnv7/Nl5S1wuO
ixP/PzJH4nhBKeMlvr6LX6fy0vLK3yo63/i7rUdqHMu6HkHi+O76k+Mr9XpF
zQep+fyfnQ9UnvZXrfdfnQ+Uf/5vzYe/av6UVz0otf6SOn+oPP+vyq9+df5s
+4vnj9TrUucbdX39sqjZbnvSAWl/9NKEaoOyJM83qfWv1PkgNX/7u40X9b6L
sr/Ucfz3+h/Xpb5XpK5T47h8uZlebHsHQGbMVcmPUnx+W5Ps/f3lGYBcf6FW
A+cT6eTndO9gO6BB9QxAHu9WUnR2Tqbkz6c+h/pe3YVz3X1PyAGZ1n9Dc19n
J+Yzy3zlY8X/kSfUHFodPFt+16n7GcnvA5nC74e6T6nXK/rzf9WeDuVs57/7
dYdS5sO/1/+9/ivXqfVI/X33FJPleY0vADJ1jFH1gmKBeWYPO2ja5jwgJ/Ve
bLDio8CM+1r4nHe5AsjclRvOnHkjMKfDWo+dKl8B5H336+s3vhVYp6fnW/Q8
7gTIj3rz0lNzBeae3W9+G+cbgEwPU/pskC+ws3uVQr7XuwtI0156Nw4mCqzd
k0PL16x1AeQ7f51zKikCGznSRrVhpBsglWNeGA0NFNhpw1XqzjXdADnyYs7w
7aECmzRt+PNOsd6AfL3oN8895wTWba/y1FHPvQD57qZfFeerdH9+go/vb7I7
jwD5+eass2omArPn/dD2or7oI7OXbFl6OwiQQ2uc7m/fSGChVS2UMwY8BeTr
oipbjywqYklvDBefN30CSB9rP//crUUsquex2sknIwAZbGUzptrGQma2f10V
rWYRgEz2PvuqycVC5vzq5e6SQ9GA/KpUOfKdWgFr+vil6eYvUYD0XD8xVXdO
Aas15bGZ8ct4QHav6abvMCaPpRo+P3deOx6QR24VnL3lkMduNFCZ56qcAsii
bBOLaTnZ7NnJbVqRG5IBub6N/H6tsTlsbMbgRjOrpAPyzKMpCedayNgVl729
tPzSAJmuJU9avUPG1pi80T5odBWQz9q2GO3+WmG3FQ9U+m29CcgrbXednpEj
sHFDQsDa8S4gCzz0jr6JE9jdD75zZp51B+ScHkO1XoLAfB+7znqZ6gPI4AeT
slodF9ho2Vy/L7P9Adn0cnLTuOkCa2o4brxVjxBAPu+9ttv1oiJmxfuzrUR9
2knf548Ob/ESkHq/dQ1NmVrIcvcmGwzvFAPI7jPm12mfk89eLmx3cNyqBEC2
+FK36pmPuWxM8/BTw26nAPJ61fQFF22y2bn+WgvmjEwHZOt7Y2Km3Mli76b1
7Ndj0S1Atrez6+YnF5j6Sfda74bdA+Ss5e0XD40RWI/JJm+3LfIAZPtty7x0
vAWWf+G52sich4Bs9rXnvaUHBfZFtjU2tloAIH3u2A5uPk5gW/I7mUTUCAXk
2/i+p77FF7H9lWNOG6s+B2R4deNN7br/rAvowvuu9T+M1uzuGQPIGrcv+Eff
ymcjNa/dGFg3EZDnTd59inLMZbHnd07S100FZITP0Ac1OmSzlU0tP9XflQ7I
Tic6X5wxLIuNXNp05qyEe4BM0Rijbh4psH7jvqfu6+UJSMek35tvcxfYmtct
56595QtIlTYB+ha7BSbrDs3WOAcAUiXUdLdssMA0VSIjbqSGAnK1VpOX9oFF
7HgV5cPb27wAZOje6s3s6xYxo7UJY636RALStHmSDXwq+Ekfgf3SqbsaOjW8
lgjI9KG2l6dMz2W3Dtd+GBSTCsi+SrnVLjyUM9eXQTMWBKYD8tT2S6eCwzPZ
ispX1Sy+eALSrHvm3DN3BTZE3k/X8CMAMuhk568DtwqsbsCtBgGzAwFZPyTU
Vqe7wBy0T3x46/4YkEvaaPRedqeIraq+wCS8cTgg63+asDY1t5DZ3jRu3f5Z
JCBNf69/sFdwAfM7t8+wfVEsIPd3zmxQov6zfgH7wze8Nzro0zsNkDpPj6jt
nCFnYd5OXyZVyQDkEKV7Q32MMpl1QjfrQ5aZgMxeUbXfvIlpLPeWvu3nrX6A
nDg6LPfBOoEFN149JaBqECDHr5mYptZOYLl9e4y/sD8MkG8PBIzZc7yInevq
bf/8aDgg21knN6sVXMga69cZGzM/CpBKA27frX64gJ13qurT9XAcIJuv8HwW
lZrHdF3VNQKTkgD5Xuu02c2rOWT/dk+9Qct9h2YAssZ1DaWphRnM8t7axTOu
ZgIyxdHhRP1HqWyCpoeG5q0sQB5ff/qQT/UEZs/jk70oTiXzOJQsikdU3KHi
CxVHqHhx+8qaWSqQBkjbLnV3d9olY614vdpKVLeeW72nSUF4JiAnGbSpvlKW
wmIDemn3CcsC5IphKXrbdOOZ57n3SxZayAB5MmGe652JUSyMx+MwUVyO4XEX
GcTjrwuPry6iOFubx9HaonhKxU0qPorfl6by96XQ/03rWdlZgLyzUTeup3Uc
O2+h13HUHhkgV93eGK9/M5K9a9yub+hrGSC7ZCX1zen7giXy+JT4i3FqHI9P
48oYp8T9Y+68fyy8fwN9u1MyQDbv3dXbrGYka63To23HbzJAal5IyInt9Zzt
+rp3jHywHJDbV4a3/BwQwqby+IFUKuc4Iu5zO8T73L5dsn/QtqYckIazmxro
aj1j+eqb0g6MkAPy4eF9j9p/CmbXv8q8VRbJAem+c/+JrJJHpJ+/yf37zTL6
eXHfHfZbbm/x+9VvYxX24nwZnufZoHswYx9HjCo0kwMyuV2HfHXTR0xvUKMB
eVvlgMxvdu+lWjfvcvPD1Xn/H7Iz7wPceKnk06UVckCuj1pXaWqIH2t919W6
1XY5IJsw8yU9dbzYRGPtBOUDckAGDrg1KHyd609+Uon7yQ3cPyKTCT95lPtJ
cT/qTN6XqGeQOX7wToV9OJNeHhmtPvkBM+z18PS0g4p5wOnSfdqwHQH32e+u
G+LaHZMDsqnxg/7w9A47z/3XeZEfK1jdaZZxSBYgW1la71WdEc8aJ9lml6yW
AfLFysWZxmZR7NWXqImpGTJAHti5pmtTFs6O2dTdN0NDDshruq2+LLnwmHV4
4nAgaZYckHlFS0b6qQSyJf0bza9hIQdk7mtZrUezgOwrrr1k7Pg1h+SAdG99
s4136/uMmZx57aV4TmTK3uouptm3K7wu9uJ1rJeonjUbMNPU8MZlQG5crd88
V1G39mplNDXG7jog39Rxje1SKDC1lPVWtTbfAeQ52xVm8gyBRcf7bo+OugfI
qJczRuxX5JPHs20ihrTyAOTo2JgaxT4CE048muTe2QeQxlb5jaafUdSJvG48
IqofpyiFH1hl/wSQJq9zt9lYFTFLD/Nhek/CAfmy54yJNTwKWb3v9k9UW0UB
8kyHFjYBTgXsoX6DmEOnYwG5boXj5BoT89m5ji17OHZJBOTIp7fHTDuZy1JP
WtTUuJoCyDaDhqyQ7c1mfSvlXHiXeAWQB+OODJ//RmBNFhwq9FdzAmS/epOS
L+YJbERC+zlN9FwAaT3vNwdvRf0+3k5DK3GAKyDVPjjVf/BUYP0trV58EDwB
ueVWZnCWIi91cqrc1mG3LyBlRseqO9opvndS0JqHtv6ADHn2ffY0feGnusya
12V71Bv/ZusaAci2DeLClMwLmW8fnQntekYD0qR452mn0QWs4aeEFtov4gBZ
/XiywZiAPLYlZ0CjQfOTAGmgG7NpXH4O6xxep0T7WSogofUoxymBcpa2ZMk4
G8+bgNzTJGfp22yBrRi2JN5y9l1AjtsdcWZcgsAyHr6+d/iMGyAnZDstXBwk
sA8D17VpF+AFSLOC5ZafrwrMMSc+1NfcD5Ce/sYym/UCK17jPKFrg0BAXtha
nDSmj8BWDhi3VT4kFJDt+zY2ehpF12Uf1z9sZs1iALlsQktll+R8ltx8uPeH
L/GAXFNye0W93nmsnkdhYNMTyYB8v8eoy6m+OWzvp6wTWRZpgLReLOvw9p2M
1Zn4ouedhfcA+e3odMdD0QJbfCApJOe7OyBzTPOvnn6oqEfu1rOyP+oDSN+B
40oGnBRYVPGWiw0uPwJkUgPm/sFEYJFDDgXvsg8CpFr49UpRTQSmVeXAlb1q
YYD0qZ3aU/1yEVtxY6lcRf8FIOPGNL2QWr2I7eT12E5RXfagAejWUUsEpKml
cknUmVym698gQcs/BZDbPgx8/9Yym81t2Wdazvc0QH68+La6XRsZ6xY3vXu4
iScgdRNrDZzqJjBX90mPNRb5AvLsnfvLL+5V5OfdtdvaR/gD8vbZycqf9BTP
O2ralg2qIYCsNPDOnpJXRcytrmtYUdWngOx0vkWOy/Iipqdx0Pz543BABhi2
1DRX+JPX276PupUWCUiP7GaT1kIBqdt929nmqE16KiCFkCumqu5yNnmRm0mn
nemArJvu5pI3PIs9bwv9jNIzALl42csqTS6ns8fKfqoZLf0AueF2Wv2+mwW2
561Xy3bfAwBpPn9Qr8N9FfVaZmLizeOhgOxhoZn0/EkRW9bEYINh5jNAvrBR
KbLooxjfO2Eb9XMiAPlcd6zzHNNCppMc0nJmh2hA1tp9tbn5hAI2KEaluPXJ
OEC27Wyt2yspj03m9dhkUV22tsn8Ai1F3oN88Lqt6ydF/uOWOHn+0pGZgDRY
leBgHZLGkoZne6noZgGyIO75gPqbk1jHjUlp+zWCAOmaHxvh30pgyu/ZxiDV
MEB2qlWlZOKVIrZo6bx3HeAFIK9/tou3Ky5kjWotufuuaiQgazmETvauVcjA
49qA4nkxgOwQ2C0q9UU+22S5aKdtZjwglwStTldjeWziq+6a2WuTAfl576C6
ShNyfqrL2vC67EsMG7bxUiYgD2x4O1brRSo7sXdOWLfdWYDUH2h4sFVBAou0
2rjArZcMkAG/R38zMoth03j8Q87jcdCKxz+r/3IcpPoexXlaG56nzZRPsh48
VwbIBc8rr3ugEs3MNuxxNQ6VAfJxju+OF/oRkuNUIx6fkNVKiVNdeHxC+vI4
Ja7LPHhddjtgvJ6KjQyQxeNDD6/0jSTzTN3oh8WmHeSA9L6Q5uJqGca+8PiB
XFpKHKnP40d9URzZx+MHciuPI+K67DCvy4r7rXC58UVx35x96iRU6jftORvh
1XFkjd5yQEaeH5b1LCT0p3w4n+fDXty/e/2inxfXZfa8Lntjb1X70nA5IC9p
Jr0AlRBWq83p2Px5ckCqjFxr3zLUnx1+V/fEo/VyQHquYwcOz/Fl77n/RRZx
PzyF+19kHcIPL+J+WFyXdeF12Y65bL2Roj5Eqt4r1n234ZFiXIZdf7NJDsha
nevZPZ/rw5SOK0eusJUD0r2jtW1Yujuz4P4R6cH9pDv3j8jZhJ/M435SXJfN
4nXZxlHFHo+3KepHTnW/0yUnjb3Yu0ZzHU33yQG5YlpSi0nGbqxH7RdLNtvL
AZl48lhk4sC77Cv3X8i9hB+bTPgxP+7HxHVTQ143Ld2942NHRX2I7Bh6KeZC
yn2mYXYjuttROSBnR2aNjlB1IeudRG4XZCG3D6XXo/wwdc6D+Ln8+XNRuj+q
bhV/vhv//FncP84S+UlKX0n5T0pvSPk36n4ov0fdD+UPxbrXw/x+KD8pXneo
86Xuk3ofRd2n2B/25v6Q0ueK/WQU95PUfYr9ZyH3n5Set6zPRelq8T6p+xf7
1Yvcr1L3X5P72Zoif0vd/xHuf5EPuB+m9KpSn5d6Lso/U+/TKL9NPZfYn9fm
/pzSI1N+ntIpU3kvZZ+Kshulo8f3e5R9xPGlK48vlH3EcWcljzuUfcTxKInH
o3SuZ0aO4brmsvpzN8KfBxD+/GAp/qSsdu4sUdeP8ZF630jFTcqe4nhqwOMp
ZU+p7xup/J+yv7guWPgn4x1l/1+d/1LPW0jgdqbsL34PnMrfA5eX/aVep/ah
qHyprPnAgVLyASo/kZoPVNQ44niJx2UcH5e/arx+dXxLO6+DymOpfEk8joeJ
fOmlxHwpv5R8qazjS52PEUeM7991HKVep87fGMP315Fn+T471Q//jNfDyCVY
FxM6phV8nxjZme8XU59P7YdS7wmp7x0GVdNmqGUBsvfKwtffBiaT+7DU/Yj7
RlL5fqi4/t3H61+qP0G8f3qM75+aVNdo+fvoLEC262iUP8ssib26qX5xVCuF
n+Ss42MU9qVWLNnvQd0/tX8qvs8Mfp/Uezyqb8T3Xca52WZZgLQoCXEecjKR
7CeJGB03bUgfGSDP5Lv3GDgzhiXUG+U4z1sGSMMDU1vaREaQz/V1yVGfSOcM
QK6TO+5cWOfnc/DSiedKIfpGbvO+EbF+U53rnqh+ksTuOyMtJsgAGfRo+2Dn
y9HsPe8vQXbifSZtZsTPUwmTATJr0MVrZ4dHsF1KX5s+bCkH5LdlqYNnjXhC
2qH3jHfmvlkZgJRVGXgv7jS9Hql1IbX/RKz/csLzZ0R9KRq8L6XlG60bk+Jk
gMxp32PANOdwtpP3qSCteb+Kt76bmkVHRbznfNS1SU9VwzBmpa81Z+U0OSC3
tprz+K1LIGkf7Qmmgw2bZQLyjN8pe2UN2j7z+DqcV8b1KLXvRayP68v1ceJ+
GF/eDzPE6PKgDE05IGOnby20snjMHHl/DNKT98mU/Jajaj1bDsiz7tePvCsJ
YJubfPMfYCEHZPRqgwt1x8BPfVal+f+y6g37cx0WtZ9F2Z+6LvYz67ifKas/
mcv9CZWfUP0/Yt3iBq5bFPcFJfG+oMMWsZvm/674XM63t/a5PNML+KlfKI/3
CzWwyaqvZikHpJvd3ogu/X2ZleXC3d92K+Y556xR1meyHDx+6r/6b8VT6hwD
yp+I/WEw94dl9Xsl3O9R73OoPiixnjQbzxES9Ucp8/6o25PGXRas5IAMOeKw
vF2Xhz/1TQXxvqknW+v6X7WVAzJnx6b8W8HuTHksE24eUXwu5506SwrqPLr7
U76hIzHfSCHyjQNEvpFG5BvY10r5N8qfU35P7M9zuT8vq9/ewv02lbeL+8eS
ef+YWBecx3XB4r6yu7yvbEDbDB22Vw7IOrFeUxd+dPup36wZ7ze77zA38Iz9
D33xH/ygmemp2+kuuZ9b1rxrssS8K4XIu1YSedc6iXnXWe4nqXhE+U9xPIrj
8Ugcd84RcSeGxx1xXdaA12UR9Y8Psj0kB2TXe+d2aja8z1y53hv5iOu+b+7X
aB+jGD/kPcM7m3r73mYfeuv13uWgGD/OO17LO1rY0vtEUq//al6aVk55aac/
mZeK+587E3lpJvfPVByk/DYVB8XxzoOId3N4vKPep8W/2dN013E5II1PdVt2
3vkWq8X1/8g9f9PzQMR5e1YpeftwHl+R2kTe7ioxb78hMW+Xcz9P9ZmL/T9w
/y+OyzIel6m4II7LwTwui+NvdinxV/w+Z+w/7H0OOX94PYM8zesa8fuEtkT9
UpuoXw4Q9cucUvr2xfWIB69HxPFazuO1OC7X5HFZHH/f8vj7V9nfyKR+eqvW
JwCZ8eqd99ovAunnqXpcXIfieC3l9dJSUd1UXp9P1WVvU1fp+CvWA7JFYEGT
wBtOP11X5dfL6xyAswevbglV/B/ZXq/Huy7naV22+O87lfL35XWd0oNT84HS
51L6U0p3SekQKV0epVOjdFuUvonSB1G6G0rnQulKKL08pa+ndM2UbpfSq1L6
TUrPSOn7KL0bpQujdFWUXol6L031C1HnCVDnD1B6cErvTOl8Kd0rpQOldJGU
TpDS01F6NErnRemAqHMVqHMYKL08pQendNCULpjSyVK6UUpHSekNKb0eFReo
+oLKG6n9XOo8Cur8Cur8AUpfT+nKKZ01pTuWep4Dpd+k4i9Vp1N1GZVvUzo1
6hwP6twP6jwH6rwCSqdP6dYpHbfUczCoPId6f0W936DqWapOoXR/Us85kXqO
itTzNKSeIyH1XAWp5w9I1elL1bNT+TD1/pl6b0m916LeY1D1qVQdKHW+DXUe
DnVeCnUeyK/maXhOAqVXpc7boc7nkZoXUed1UHkRpZ+lzvmh8pDyyjeo84Ko
OE6dY0PFa6pOpPapqff51Pte6v0etZ9CvYen3tNKfS9HxV8qXv9qXLaQGJdx
/5ran6Xef1L7TdQ+RXm9x6biLBWXqfhL9atQ+7DUfh+1T0TtX1P7pNR+HLWP
U17vByoqHhkS8egbEY+w/4Ha36f2kan3pdR7ofKyG3X9S8MRdd4kXgFkrdQ3
I3/o6I3dGvXZ5HkTkPNtl2/+oRPPUvVqfmHhPUCet9ic80MfvTAg4LqziScg
BymrVZ7mJrDlt0dMDGjpB0jbj0lK/TcLP+ko8TyBPvnDffu4RgAy5NDEfu3M
C9lMk9Qg26ExgKxhNHRh45R8ll/ftPLMtomAnPm1fYn32Vy2NWC/zY7UVEC2
G+DxfKuHnN2becXXrHIGIKPXtTefPy+T1FXt33O5+fLZdwH5/GLV8B+6+Lis
s3MffncHZKHNsYtnHgqs0ymXuz4LfQE5I2xQ8JW9Aqu/zOvhvZIAQD4s3v72
ZF+B+XH9JHIe11GGJIxdtP1zPCBr1NxZK7h3Hit+P3bKAkgBZN9vBdeDrbKZ
8ojiM/e3pwPSvKqXfMnILFK/RunFDH0Lxo476gNIo/a9mg4+KbA6Z7xvNI3w
B6TyxuUGVSYKTHvbWperx0IB2W1h9Rq5T4qYRva6ltklaYBcf+VaZfV2MlLf
R+npKP1a/KxVaY9VQgA55r1vbv3XRWyF/EXrfenPAKkpeBo49ylixu+im0/K
jgCkw9YNlZ1MC8nzLqhzG6g8n9LjU/p0Sq9N7VdSejFKZ0rpOqm+Dkq3SOkg
qHU6na/P6aJ1msfXZ55onW7h6xOpRqzTGL5OB4RWNmxoo7ADZ7VdVy6f8o1k
Fk9vRjp+kQGyV8IL7XnTnpM6Vkp/ROk0KX1HKF+fSCW+Tj/w9fmhjOuU6gvS
MahySKm3HJAfqrdomBESSupwKd0rpTOldJ1lXb+LifWL+ilKF0zpsyjdKxW/
yvp7waXpKcqqW8Q+fEpHM5DPS2RVPj+p/T7xvO3J5y3VL/er+kTUd1DzitIF
SNXHlZcOTvxeqKCc9ZsVrYssq84FdRAVbc9f1d2gLqOs6+vP6oKl6mql6k+l
6ivL+vvFpenOKlrH9Kt+6WApfqm8dM1S9b+UvlXqvC2vuqms9pf6O9SHCf/8
sRT/LFUnTumpKV3wX2VP6hwJqb/vLFWfSOnoy5q3JJWSt5TXdUpf9qu6pNJ+
x5k6r5L6HKo/Smr/vNQ+Xur8TKl9fVL7uKjnouo7qu+U6iek+sSovneqvqD6
nKm+VqpfkepPo3QTUvUpVF891XdN9dlS/ZNUH51UnQ6lQ6Sei8qjKN0HlUdR
+w5UHkXtR1D5ErVPQeVRVN8p1ZdI2ZM6T1vqedRUPwC1vigdDaUvo3QZlL6J
6uen9DWkvok475fq46X6P6XqYsT2Ty5Fr0r1D1B+htrXoM7fpvY7KL9E7YNQ
505TOgvq/Geq3546h5nqr6b6cisqbpamY5KqY6X8s1RdJ3VuvFS9IeX/perg
qPPSJeutiPPMpep3qPPGpeo7qPPAy6vPX6qeq6x+Xmq+hH6b8s+UH6b0cZR+
itLLSM3zqX6MsuZ1K8opr0N9NKXDpfSelE6Q0pGVV31EnYNBnadBnRdB+THq
nAFKX0/pxymdMqWHpXSU5WU36jp1bgn1+1mUXobSYUnV8VF6TypvoeIj1ZdL
nWNA9WlIPR+Dqsep80+o+6/ocaf0KRX9vdR1Ss9SUXoZ1L+szLpTZ4FGECAb
DiocH9xKYBFCm0+/37gMyNVVO6r++B2H4jzlwD6qYYC8GXd1/twrRWxs8tCL
F5+EA/JN+GlNwb2QpVtbmKXZXQdkH/eeoT9+90F4fb5lWz0XQM4P6T//x+8X
+Lb8/DTs4QtAfjHV2+9ZXMhMlWvvV24dBcibvkbbzZwKmFfj4XfuhMcBcmDs
mKJj/nlset43106b7wCyazXzPj9+V6K5H9xSGugKSO8hRr08nwqsXlrVFWYB
XoD8Pdl928erAmt02EcGVSIBqTtvxOJ2tQvZlNYDI03OxgLSZNqYpzp6+exc
6KE+PRYlATJ30MLqp3Jz2LDd15RerUsDZJrBvoYmb2Usg01W/xB1D5D9tj1z
3BcpsIKnSqsWvvIEZF2boTUz7gps8nIl+aC1foCsFOwZumW9wKoUW3Tu5xAE
yJMXCu8GNhHYlHO/aS4zjgFkU5ewgC3h+Szx+PqSgq6JgPzwcezZtidy2VT3
Z4fWhKcC8ln/c5fr+stZk7CBmVatPAAZsFf33HsfgXmPVeuxeo8vIJtaeE2/
YCcwg4u2adoNAwH5bZDGLu0+AqtZQ3uJSYcwQJ4K7FDy/lIRU+vpcjw6LByQ
m3ZmRKl7FLJqB8++MM6IB+RiP9bLleUxt12uDZQcUwD59tqKoS522axoxqsx
tbr4ALLGjgB//TMCW//cbsoUO39ADp8ycMk4fYE9H+g8YtzQUEDWXaC/7UZU
EavXIs/YftoLQGpZjN+4r3oRmzpmWYhuRiQgM477zM/2LWDx5w+pTTwVB8jY
qxuXX0vMY/q8H0hf1Bck7s/Zz/tzRvP1g3zL15H4fHJT3lcj7nuZwvteFrOj
wcPmygB5cNkO1wMq0eQ68uTrBzmIryPqHEsnZ/Vok1AZIJtHdGztpR/BbAeo
e87vIAdkSENL+wuWYWwyXyeTf3G9SJ231DyhzvOk7FZe53yK7daM243ah6Ls
KfX9f3mdVyn176Wel0j1pZR1vA7x8ZK6L9yN94t0E51fSsVrqu+COsebGndq
fKlznst6DuF/a99Q6u9TSK2Ly/r3yaX8PeVvy/r5pe0fSf3744PmLPyueQWQ
8xz7fBqpyK9C6q5zWJ5zA5A9N3eY9T1PYAO6O07UOOUCSGOXKU03JAvMXvXg
V2GgGyDhRt7YTSECO/UqtIlTPW9AnmtWbPb9ssBOrDvYZJHGI0CqTm8eMGyp
QMap2V/cv4dqRwCyx/iuWUYnC9lO/5o9NqpEA3KSR63e5yYXsC921Wx8R8cD
Ujau7ZXWe/PYRpuAma12JANy675ukxaMyGEGoVlfAx+mATIincX23C1jT1ec
WZgLLoC0PqfeODFJYB5b1OcMWOoGyJG/qfiYBwvsTtM+x1QmegNysVn/oxMu
CWx55T7RWlMfAVJz6/aCXYsFlnPC6WbH5CBA1nv86OX8egIDHl9B9DsgtuPs
fjtlEA9IZXXHwV235TFvL52w1/uSAflppYPe4iE5zLTFV50dPmmAdDsUrNrJ
VsaqGo6yPrvPG5CupvdyjlwQmF1zs+M1Nz4CZFrTceoBCwTW6kFoM6FuMCA7
T9XtqlFLYO31xhQcOfEEkJ/mnXj6ekMROzX73FVX7zRAbq1mp7bQTsaabr+1
9vuQYEA27//aPL2awAr3vQpIefYEkBedWitnmhexWR6m+lG9IgA54bJh8TXF
uF9r/8X524QIQPbbsbhY6Ughc7yvk59YPxqQ9fSFFOWpBexZ4onTloPiAelv
pLnv7aE8Uq8k1k0/5DqgJVxvs0Sku1HlehjVUn4X1Z74XVRL4ndR7biOTLyv
1I/vK5XX+UUGfF0ZiNbXDr6udpRxfVnxdWVVxvUlvv94fv+XwkLb/bhvpJHx
gl5vFfcfeNEo+Md9I3uOGL6kjuL+qXXhxdeDVxnXhdhu57ndnl744/uQvU//
8b3ieb6Fz3PKztR8e9PgzezKWlcAufTuww8//DCl39/a0adard4RgOx469L4
iYrxmlGlkraFwl8jWx8LnvDDb5t8FEa9Ufgv5LRzcQUJCj+2lM/jpaL5rOO7
yqK/ajQgZ0y+3WyWYtzvdbw2zc0wHpDJVdWiLlrnseKMyW/7KuIBMsX7VZ6l
Ii5oexqpz1b4R+SxK5p1fvjJJ1pP7KIVfgcZ3FnD5LDC/6jw9aMiWkc+Ud01
G4+NB+RxXW35Rrs8Zhxu4dj8YDIgPfvuDW46OIftGam3eYNiXJF96k5mfWxp
PWYXjZrHaw5yg//L6DVBGxXxS7P6WsclCj+OLLkfMnmcwp9rfMistFDhH5Hd
bn5x9FH4yQNFPXvs1AkGZNU5Tw9EK/wbpfMaEnTM5MHOZEC+FTSrmw3PYeY2
2Xk3FOsEqZfc6fWc3T/fP+Y5QWZRQXGK+IqcOfeARokizq7tNDjRWhFvkOoF
n7WtFXHnmO/j/u71ggGZ/vXphuYKf655OFuTvXgCyMsFtxO8FH546f6QW/56
P+bJH+yc0nD2s8OF7Cn3X09FeqtrN49mLvJNA6TP1z2retvQ9x+c180qNzwT
kI7bmhtskqUwJ2FjLxtFfoDs6P7m0lBFnpC+P3CQvSJeIj/duNzUQBE3i+x9
25w++QSQnkb3siIV8eiO4bQHfgq/hvTccWKCiWK9vKtcuKZWw2hAnky4EHhF
v4Dt0XDcMXtwPCDDF3WCPYp4Qfln6rksE9r953mQRztO/M9zGW26UagdlgVI
098Nr9rqxrOpPO+ZKsp/tvB1vkW03qnfCxOv3+l8/brwdesiWr/ltb50+DzW
Ec3ntXwery1lPuN6pPbjHPl8QnoT86p1KfOK0l+s31D5P/tMSM82nZN/7DdR
ny8eX3tifE34+FL9rgv49yGvdv3jewuufFL7sX+DnOi9OfTHPg7VXyTeTznF
91OUu3qVtDWXAbL5yaK66cZRTDf0luq6LBkgVVdM2lGoFc6Ml442T9CQA9Kl
fty89kd+/h1h7Bs3P7P4ZQfF5yIbvjaM9FN8vvh+TvP72XDpusN6xfchLfUN
DZMV31tTL73kx/chq32eN6yJ4nvFz7uqlOd9yfcLkRp831C8L3a/lH2xJtxe
yJaE3Zpxu0mtW8V2vsftXNY6F+eh1Plf1vmM/oraD6LmOTVeZZ0np4h5sl7i
PCltXVDPRflz6vOlzhPKD0iNj+L5c5fPH8p/iv3bA8K/lRa/xHabQswHU8Lv
NSD83rVS/B51n2Wtj+KJ+ug8UR/F8rxd3IfQjfsTqh+AmudlrXd+L6XeceL+
y6mMfoya/1Z8XVmVsr6q8vVF1ZVUXKDqJql+krpOjRc1P6n1Tv39/wHoMI8l
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->{{-2, 2}, {-2, 2}, {0., 13.611627755019644`}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8485096404462223`*^9, 3.8485097318861837`*^9,
3.8485098989253783`*^9, 3.848509963552758*^9},
CellLabel->"Out[33]=",ExpressionUUID->"866776a1-6f46-43a5-be26-aed13a2ed7ed"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8485092363586826`*^9,
3.848509237824213*^9}},ExpressionUUID->"3f5e3506-23ba-48c9-b341-\
e920223d6424"],
Cell[TextData[{
"3) \tFind the volume of the given solid ",
StyleBox["S ",
FontSlant->"Italic"],
"bounded under the paraboloid ",
Cell[BoxData[
FormBox[
RowBox[{"z", "=",
RowBox[{"16", "-",
SuperscriptBox["x", "2"], "-",
SuperscriptBox["y", "2"]}]}], TraditionalForm]],ExpressionUUID->
"5ee49e22-8672-4eba-9845-494b9255d779"],
" and above the region bounded between the line ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=", "x"}], TraditionalForm]],ExpressionUUID->
"aecfd6c4-3ce7-469d-b71e-ce0284c3ea3d"],
" and the parabola ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=",
RowBox[{"6", "-",
SuperscriptBox["x", "2"]}]}], TraditionalForm]],ExpressionUUID->
"54282da2-fe02-46d2-8054-a6a9c6f85484"],
".\n "
}], "Text",
CellChangeTimes->{{3.398167808765625*^9, 3.398167837515625*^9}, {
3.39816795846875*^9, 3.39816824128125*^9}, {3.398168277765625*^9,
3.398168375875*^9}, {3.398168423671875*^9, 3.39816849215625*^9}, {
3.398170094265625*^9, 3.398170097984375*^9}, {3.399888649515625*^9,
3.3998886865625*^9}, {3.39988874425*^9, 3.399888815515625*^9}, {
3.39988891340625*^9, 3.3998889150625*^9}, {3.39988902503125*^9,
3.399889119984375*^9}, {3.401384922609375*^9, 3.40138492575*^9}, {
3.403518477671875*^9, 3.403518490734375*^9}, {3.4037870771875*^9,
3.40378716153125*^9}, {3.40378719890625*^9, 3.4037873074375*^9}, {
3.403787341578125*^9, 3.4037875445625*^9}, {3.4037886363125*^9,
3.403788815609375*^9}, {3.40382676728125*^9, 3.403826931375*^9}, {
3.404295409984375*^9, 3.4042954999375*^9}, {3.404295701984375*^9,
3.404295788734375*^9}, {3.404295823234375*^9, 3.404295867640625*^9}, {
3.40429590146875*^9, 3.404295923296875*^9}, {3.404295991640625*^9,
3.4042961435625*^9}, {3.40429619478125*^9, 3.4042961956875*^9}, {
3.404296230125*^9, 3.404296277171875*^9}, {3.40429689884375*^9,
3.404296925625*^9}, {3.40429696175*^9, 3.4042970348125*^9}, {
3.404297066671875*^9, 3.404297125515625*^9}, {3.404297161125*^9,
3.404297205515625*^9}, {3.404297248*^9, 3.404297342203125*^9}, {
3.404297379734375*^9, 3.404297381671875*^9}, {3.404297505296875*^9,
3.4042975065625*^9}, {3.40429766640625*^9, 3.40429769703125*^9},
3.4042977489375*^9, {3.40429783853125*^9, 3.40429783928125*^9}, {
3.404297913796875*^9, 3.404297955734375*^9}, {3.404298000234375*^9,
3.404298089796875*^9}, {3.497270320445621*^9, 3.497270323548895*^9}, {
3.497271225780584*^9, 3.4972713291179705`*^9}, {3.4972714679663258`*^9,
3.4972714708798857`*^9}, {3.5027205922872076`*^9,
3.5027206030243993`*^9}, {3.8006556056419687`*^9,
3.8006556500254107`*^9}},ExpressionUUID->"bd5bb284-e2a9-42f1-898f-\
7df609e5b7ec"],
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"16", "-",
RowBox[{"x", "^", "2"}], "-",
RowBox[{"y", "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",", "x", ",",
RowBox[{"6", "-",
RowBox[{"x", "^", "2"}]}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "6"}], "}"}]}], "]"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{
3.848509705129635*^9, {3.848510171629136*^9,
3.848510240038741*^9}},ExpressionUUID->"80f031c0-ab76-49cd-bec0-\
0270698fdf70"],
Cell[TextData[{
"4)\tEvaluate the given iterated integrals:\n\ta)\t",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "1"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "x"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
SuperscriptBox["y", "2"]],
RowBox[{
RowBox[{"(",
RowBox[{"x", "+", "y", "+", "z"}], ")"}],
RowBox[{"\[DifferentialD]", "z"}],
RowBox[{"\[DifferentialD]", "y"}],
RowBox[{"\[DifferentialD]", "x"}]}]}]}]}], TraditionalForm]],
ExpressionUUID->"1927d276-189e-48de-9949-44303db8cca0"],
"\t\tb)\t ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "1"}], "1"],
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["x", "2"]}]]}],
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["x", "2"]}]]],
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["x", "2"], "-",
SuperscriptBox["y", "2"]}], ")"}],
RowBox[{"\[DifferentialD]", "y"}],
RowBox[{"\[DifferentialD]", "x"}]}]}]}], TraditionalForm]],
ExpressionUUID->"7adccfba-ec5e-40a6-940a-528bf7e33fc6"],
" "
}], "Text",
CellChangeTimes->{{3.398167808765625*^9, 3.398167837515625*^9}, {
3.39816795846875*^9, 3.39816824128125*^9}, {3.398168277765625*^9,
3.398168375875*^9}, {3.398168423671875*^9, 3.39816849215625*^9}, {
3.398170094265625*^9, 3.398170097984375*^9}, {3.399888649515625*^9,
3.3998886865625*^9}, {3.39988874425*^9, 3.399888815515625*^9}, {
3.39988891340625*^9, 3.3998889150625*^9}, {3.39988902503125*^9,
3.399889119984375*^9}, {3.401384922609375*^9, 3.40138492575*^9}, {
3.403518477671875*^9, 3.403518490734375*^9}, {3.4037870771875*^9,
3.40378716153125*^9}, {3.40378719890625*^9, 3.4037873074375*^9}, {
3.403787341578125*^9, 3.4037875445625*^9}, {3.4037886363125*^9,
3.403788815609375*^9}, {3.40382676728125*^9, 3.403826931375*^9}, {
3.404295409984375*^9, 3.4042955063125*^9}, {3.404295537765625*^9,
3.404295698796875*^9}, {3.404297615390625*^9, 3.404297639234375*^9}, {
3.404298218015625*^9, 3.404298411265625*^9}, {3.404298473046875*^9,
3.404298492578125*^9}, {3.40429854690625*^9, 3.4042986211875*^9}, {
3.497271358175247*^9, 3.4972713829248414`*^9}, {3.497271478649379*^9,
3.4972714806544094`*^9}, {3.4972715220861225`*^9,
3.4972715316098957`*^9}, {3.4972718123105674`*^9, 3.497271823385086*^9}, {
3.4972718806373715`*^9, 3.4972719087231026`*^9}, {3.497271983472188*^9,
3.4972720650821495`*^9}, 3.5027206623837214`*^9, {3.800655664864957*^9,
3.80065569064738*^9}, {3.800655775335175*^9, 3.800655778039503*^9}, {
3.8485100607086143`*^9,
3.8485100626922255`*^9}},ExpressionUUID->"63de7db7-d7b6-4f92-87d0-\
727728a80fcd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"x", "+", "y", "+", "z"}], ",", " ",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"y", "^", "2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "x"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"1", "-",
RowBox[{"x", "^", "2"}], "-",
RowBox[{"y", "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"x", "^", "2"}]}], "]"}]}], ",",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"x", "^", "2"}]}], "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.848510066247589*^9, 3.848510142095936*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"877a8fb8-5e6d-42a4-a0ea-14e3bf8bf9a2"],
Cell[BoxData[
FractionBox["2", "15"]], "Output",
CellChangeTimes->{3.84851014357876*^9},
CellLabel->"Out[34]=",ExpressionUUID->"1f8947f9-bc76-4b9d-9560-39bfa2dd20cf"],
Cell[BoxData[
RowBox[{
FractionBox["8", "3"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["x", "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]], "Output",
CellChangeTimes->{3.8485101435944443`*^9},
CellLabel->"Out[35]=",ExpressionUUID->"0d128d82-1ebb-4d85-b486-60efe177d90b"]
}, Open ]],
Cell[TextData[{
"5)\t Evaluate the given triple integrals:\n\t\ta)\t ",
Cell[BoxData[
FormBox[
RowBox[{"\[Integral]",
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "W"],
RowBox[{
RowBox[{"(",
RowBox[{"x", "+",
RowBox[{"y", " ", "z"}]}], ")"}],
RowBox[{"\[DifferentialD]", "V"}]}]}]}]}], TraditionalForm]],
ExpressionUUID->"17ef432e-6a72-44e6-a3f3-96f627a87ce8"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{"W", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], ":",
RowBox[{"0", "\[LessEqual]", "x", "\[LessEqual]", "1"}]}], ",",
RowBox[{"0", "\[LessEqual]", "y", "\[LessEqual]",
SqrtBox["x"]}], ",",
RowBox[{"0", "\[LessEqual]", "z", "\[LessEqual]",
SuperscriptBox["y", "2"]}]}], "}"}]}], TraditionalForm]],
ExpressionUUID->"9d611387-61b1-4f18-9345-8a54372d93ed"],
".\n\t\t\n\t\tb)\t ",
Cell[BoxData[
FormBox[
RowBox[{"\[Integral]",
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "W"],
RowBox[{"sin", " ", "y",
RowBox[{"\[DifferentialD]", "V"}]}]}]}]}], TraditionalForm]],
ExpressionUUID->"39616742-ad9f-4d1d-9c9f-67a3f5b4921d"],
", where ",
Cell[BoxData[
FormBox["W", TraditionalForm]],ExpressionUUID->
"091c3c4d-9340-4110-9f79-624e92e91274"],
" lies under the plane ",
Cell[BoxData[
FormBox[
RowBox[{"z", "=",
RowBox[{"1", "+", "x", "+", "y"}]}], TraditionalForm]],ExpressionUUID->
"4aed3f54-7a62-4c98-8b54-21b2369a9ff2"],
" and above the triangular region bounded by ",
Cell[BoxData[
FormBox[
RowBox[{"x", "=", "0"}], TraditionalForm]],ExpressionUUID->
"2394c60d-2d42-4af6-8079-ff47103e6f48"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"x", "=", "2"}], TraditionalForm]],ExpressionUUID->
"90b6821b-71d8-47a7-9171-d5c576835e8b"],
", and ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=",
RowBox[{"3", "x"}]}], TraditionalForm]],ExpressionUUID->
"e5876a90-00c3-4cb6-a07c-77db94794a37"],
". \n "
}], "Text",
CellChangeTimes->{{3.398167808765625*^9, 3.398167837515625*^9}, {
3.39816795846875*^9, 3.39816824128125*^9}, {3.398168277765625*^9,
3.398168375875*^9}, {3.398168423671875*^9, 3.39816849215625*^9}, {
3.398170094265625*^9, 3.398170097984375*^9}, {3.399888649515625*^9,
3.3998886865625*^9}, {3.39988874425*^9, 3.399888815515625*^9}, {
3.39988891340625*^9, 3.3998889150625*^9}, {3.39988902503125*^9,
3.399889119984375*^9}, {3.401384922609375*^9, 3.40138492575*^9}, {
3.403518477671875*^9, 3.403518490734375*^9}, {3.4037870771875*^9,
3.40378716153125*^9}, {3.40378719890625*^9, 3.4037873074375*^9}, {
3.403787341578125*^9, 3.4037875445625*^9}, {3.4037886363125*^9,
3.403788815609375*^9}, {3.40382676728125*^9, 3.403826931375*^9}, {
3.404295409984375*^9, 3.4042955063125*^9}, {3.404295537765625*^9,
3.404295698796875*^9}, {3.404297615390625*^9, 3.404297639234375*^9}, {
3.404298218015625*^9, 3.404298411265625*^9}, {3.404298473046875*^9,
3.404298492578125*^9}, {3.40429854690625*^9, 3.4042986211875*^9}, {
3.404298661296875*^9, 3.404298898640625*^9}, {3.40429893740625*^9,
3.404299006609375*^9}, {3.404299052234375*^9, 3.404299060125*^9}, {
3.404299101828125*^9, 3.40429920040625*^9}, {3.40429924371875*^9,
3.404299245546875*^9}, 3.40429934715625*^9, {3.4972714886588664`*^9,
3.497271508098081*^9}, {3.4972715400058527`*^9, 3.497271548448803*^9}, {
3.497272338152855*^9, 3.497272385677431*^9}, {3.497272447565895*^9,
3.497272447894839*^9}, {3.497272486898199*^9, 3.4972724877127266`*^9}, {
3.497272523457975*^9, 3.4972725915493827`*^9}, {3.497275712413415*^9,
3.497275713729191*^9}, {3.497275762271927*^9, 3.497275796419447*^9}, {
3.497275863508359*^9, 3.4972759091845827`*^9}, {3.497275949754343*^9,
3.4972760286382465`*^9}, 3.4972766299641175`*^9, {3.497276805918233*^9,
3.4972768102681117`*^9}, {3.5027206673068876`*^9, 3.502720673964884*^9}, {
3.8006557005684137`*^9,
3.800655729759667*^9}},ExpressionUUID->"7693d929-5ae7-43be-9192-\
a2871f213c71"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"x", "+", "yz"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"y", "^", "2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"Sqrt", "[", "x", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Sin", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"1", "+", "x", "+", "y"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"3", "x"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.848511004997108*^9, 3.8485110794139833`*^9}, {
3.8485111436011868`*^9, 3.8485111840843153`*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"0d16240e-b006-4c32-9979-a594eb875700"],
Cell[BoxData[
RowBox[{
FractionBox["2", "105"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"7", " ", "yz"}]}], ")"}]}]], "Output",
CellChangeTimes->{3.8485111861359296`*^9},
CellLabel->"Out[36]=",ExpressionUUID->"dea29fe0-36f5-4b47-aed8-87fd5ecf728b"],
Cell[BoxData[
RowBox[{
FractionBox["43", "9"], "-",
FractionBox[
RowBox[{"7", " ",
RowBox[{"Cos", "[", "6", "]"}]}], "9"], "-",
RowBox[{"3", " ",
RowBox[{"Sin", "[", "6", "]"}]}]}]], "Output",
CellChangeTimes->{3.848511186420816*^9},
CellLabel->"Out[37]=",ExpressionUUID->"9d4fd733-55ad-4b1e-8042-a23777060f81"]
}, Open ]],
Cell[TextData[{
"6)\t ",
StyleBox[" ",
FontWeight->"Bold"],
"Find ",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{
SubscriptBox["\[Integral]", "C"],
RowBox[{
RowBox[{"f", "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}],
RowBox[{"\[DifferentialD]", "s"}]}]}]}], TraditionalForm]],
ExpressionUUID->"c0716322-a860-4314-a642-bf402bde31aa"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=", " ",
RowBox[{
RowBox[{"x", " ",
SuperscriptBox["y",
RowBox[{"2", " "}]]}], "-",
RowBox[{"4", " ",
StyleBox["zy",
FontSlant->"Italic"]}]}]}], TraditionalForm]],ExpressionUUID->
"e1d20e2a-b509-4c0f-a316-a217592dee9a"],
" and ",
Cell[BoxData[
FormBox["C", TraditionalForm]],ExpressionUUID->
"34503ec2-d081-4c7b-a6fa-23d9581a57ce"],
" is given by ",
Cell[BoxData[
FormBox[
RowBox[{"x", "=", " ",
RowBox[{"2", "t"}]}], TraditionalForm]],ExpressionUUID->
"c276b41e-9157-4ad0-b9a7-70d618b52478"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=", " ",
SuperscriptBox["t",
RowBox[{"2", "/", "3"}]]}], TraditionalForm]],ExpressionUUID->
"4589b233-11df-4983-af6c-43879338f56e"],
", and ",
Cell[BoxData[
FormBox[
RowBox[{"z", "=",
RowBox[{"1", "-",
RowBox[{"3",
SuperscriptBox["t", "2"]}]}]}], TraditionalForm]],ExpressionUUID->
"4c559212-9125-41d8-accf-f28292867711"],
", for ",
Cell[BoxData[
FormBox[
RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "1"}], TraditionalForm]],
ExpressionUUID->"e6d818c4-54a5-4447-aa7f-ab7c6a34409c"],
"."
}], "Text",
CellChangeTimes->{{3.40207506828125*^9, 3.402075080015625*^9}, {
3.402684423046875*^9, 3.402684457203125*^9}, {3.40278904884375*^9,
3.4027890845*^9}, {3.402789990796875*^9, 3.402790018921875*^9}, {
3.402790138375*^9, 3.402790140921875*^9}, {3.402790283625*^9,
3.4027903639375*^9}, {3.403287024171875*^9, 3.403287028546875*^9}, {
3.40335223221875*^9, 3.4033522744375*^9}, 3.403995227625*^9, {
3.4040616945*^9, 3.40406170503125*^9}, {3.4040617605625*^9,
3.404061797546875*^9}, {3.4040618475625*^9, 3.404061849734375*^9}, {
3.40406193653125*^9, 3.404061939171875*^9}, {3.405285448546875*^9,
3.405285450125*^9}, {3.40543465371875*^9, 3.405434654359375*^9}, {
3.40551665946875*^9, 3.40551666628125*^9}, {3.408289138390625*^9,
3.40828913915625*^9}, {3.4978872575167756`*^9, 3.497887278220298*^9},
3.502723902859112*^9, {3.8006559030763893`*^9, 3.800655927538888*^9}, {
3.800655974778809*^9, 3.8006559786491423`*^9}},
FontColor->GrayLevel[
0],ExpressionUUID->"bfd897be-4649-48bf-b828-ccbcce95175e"],
Cell[TextData[{
"7)\t",
StyleBox[" ",
FontWeight->"Bold"],
"Find ",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{
SubscriptBox["\[Integral]", "C"],
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y"}], ")"}],
StyleBox["\[CenterDot]",
FontWeight->"Bold"],
RowBox[{"\[DifferentialD]",
StyleBox["s",
FontWeight->"Bold",
FontSlant->"Plain"]}]}]}]}], TraditionalForm]],ExpressionUUID->
"6b9e627f-9a0b-434c-b281-809e8cf14c62"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
SuperscriptBox["e",
RowBox[{
RowBox[{"3", "x"}], "-",
RowBox[{"2", "y"}]}]], ",",
SuperscriptBox["e",
RowBox[{
RowBox[{"2", "x"}], "+",
RowBox[{"3", "y"}]}]]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"5e3afabb-a5f6-4dde-8abe-4f03f0790c22"],
" and ",
Cell[BoxData[
FormBox["C", TraditionalForm]],ExpressionUUID->
"0cad65dd-fd96-4cae-88f2-fe98c4d11725"],
" is given by ",
Cell[BoxData[
FormBox[
RowBox[{"x", "=", " ",
RowBox[{"2", "t"}]}], TraditionalForm]],ExpressionUUID->
"693db40d-729e-45c9-81e7-b92c6a6d41cf"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=", " ",
RowBox[{"sin", " ", "t"}]}], TraditionalForm]],ExpressionUUID->
"26c0a5f8-9a43-428e-ac92-677a099c8846"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", " ", "\[Pi]"}],
TraditionalForm]],ExpressionUUID->"722abce3-4635-4b1f-ab66-da5858ee301e"]
}], "Text",
CellChangeTimes->{{3.40207506828125*^9, 3.402075080015625*^9}, {
3.402684423046875*^9, 3.402684457203125*^9}, {3.402940953578125*^9,
3.4029411045*^9}, {3.40328709846875*^9, 3.40328710234375*^9},
3.40335222984375*^9, {3.40399523134375*^9, 3.40399523453125*^9}, {
3.404061959859375*^9, 3.40406214846875*^9}, {3.404147267421875*^9,
3.404147267421875*^9}, {3.40528536015625*^9, 3.405285409453125*^9}, {
3.405434641890625*^9, 3.40543465603125*^9}, {3.405434725140625*^9,
3.405434725140625*^9}, {3.405515204828125*^9, 3.40551520503125*^9},
3.4055166606875*^9, {3.408289103171875*^9, 3.408289105328125*^9}, {
3.40828914084375*^9, 3.408289142171875*^9}, {3.497887280360964*^9,
3.4978873023301363`*^9}, {3.502723906578076*^9, 3.5027239083750544`*^9}, {
3.800655920651537*^9, 3.800655949185813*^9}, {3.800655980961893*^9,
3.8006559854737473`*^9}},
FontColor->GrayLevel[
0],ExpressionUUID->"3fe399b0-16d0-4a55-bed9-4617fbfba21b"],
Cell[TextData[{
"8)\t",
StyleBox[" ",
FontWeight->"Bold"],
"Find ",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{
SubscriptBox["\[Integral]", "C"],
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}],
StyleBox["\[CenterDot]",
FontWeight->"Bold"],
RowBox[{"\[DifferentialD]",
StyleBox["s",
FontWeight->"Bold",
FontSlant->"Plain"]}]}]}]}], TraditionalForm]],ExpressionUUID->
"d8b14d62-ac14-4e50-8820-c041962aa76e"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]",
StyleBox[
RowBox[{"xyz", ",",
RowBox[{"-", "xz"}], ",", "xy"}],
FontSlant->"Italic"],
StyleBox[" ",
FontSlant->"Italic"], "\[RightAngleBracket]"}]}], TraditionalForm]],
ExpressionUUID->"c10a481c-7d3f-42be-a411-f19573a51ec2"],
" and ",
Cell[BoxData[
FormBox["C", TraditionalForm]],ExpressionUUID->
"75be965e-7211-4e58-b7ce-913eadbbc819"],
" is given by ",
Cell[BoxData[
FormBox[
RowBox[{"x", "=", " ", "t"}], TraditionalForm]],ExpressionUUID->
"37cdaf2d-0b8b-4f09-a41b-5c6c16cbfbd9"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"y", "=", " ",
RowBox[{"2",
SuperscriptBox["t", "2"]}]}], TraditionalForm]],ExpressionUUID->
"1ea59602-0ff2-458e-87ad-da10b8f9c80c"],
", ",
Cell[BoxData[
FormBox[
RowBox[{"z", "=",
RowBox[{"3", "t"}]}], TraditionalForm]],ExpressionUUID->
"ed69f29c-47f9-4fad-af5d-079ac0bdddb1"],
" ",
Cell[BoxData[
FormBox[
RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", " ", "1"}],
TraditionalForm]],ExpressionUUID->"cb29ebe2-10ae-4314-b501-c949bc461412"],
"\n"
}], "Text",
CellChangeTimes->{{3.40207506828125*^9, 3.402075080015625*^9}, {
3.402684423046875*^9, 3.402684457203125*^9}, {3.402940953578125*^9,
3.4029411045*^9}, {3.40328709846875*^9, 3.40328710234375*^9},
3.40335222984375*^9, {3.40399523134375*^9, 3.40399523453125*^9}, {
3.404061959859375*^9, 3.40406233309375*^9}, {3.404147273484375*^9,
3.404147273484375*^9}, {3.405285390046875*^9, 3.4052854236875*^9}, {
3.405285463453125*^9, 3.405285463453125*^9}, 3.40543465703125*^9, {
3.405434727265625*^9, 3.405434727265625*^9}, {3.40551520184375*^9,
3.40551520221875*^9}, 3.405516661578125*^9, {3.40828907340625*^9,
3.40828914496875*^9}, {3.49788730540832*^9, 3.497887322158642*^9}, {
3.5027239107033134`*^9, 3.502723911265846*^9}, {3.8006559516028223`*^9,
3.800655990489484*^9}},
FontColor->GrayLevel[
0],ExpressionUUID->"7ecefb69-3227-45b1-84ae-d011ed084aea"],
Cell[TextData[{
"9)\t",
StyleBox[" ",
FontWeight->"Bold"],
"Find",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Integral]", "S"],
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"],
StyleBox["\[CenterDot]",
FontWeight->"Bold"],
RowBox[{"\[DifferentialD]",
StyleBox["S",
FontWeight->"Bold",
FontSlant->"Plain"]}]}]}]}]}], TraditionalForm]],ExpressionUUID->
"873e8182-f6c5-4334-9276-bc3c9d6717d3"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
SuperscriptBox["e", "z"], ",", "z", ",",
RowBox[{"y", " ", "x"}]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"526a2f94-a939-4201-9dde-2a8d1928f57a"],
" and ",
Cell[BoxData[
FormBox["S", TraditionalForm]],ExpressionUUID->
"52ba80cc-7f5f-40a2-bed7-1204c2ab2a5d"],
" is given by ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"G", "(",
RowBox[{"u", ",", "v"}], ")"}], "=",
RowBox[{"(",
RowBox[{
RowBox[{"u", " ", "v"}], ",",
RowBox[{"u", "-", "v"}], ",", "u"}], ")"}]}], TraditionalForm]],
ExpressionUUID->"5c6ffeab-1158-4748-9022-85571ffa3557"],
", ",
Cell[BoxData[
FormBox[
RowBox[{" ",
RowBox[{"0", "\[LessEqual]", "u", "\[LessEqual]", "2"}]}],
TraditionalForm]],ExpressionUUID->"8812e37a-6b6d-467e-ac37-d5429f529ce2"],
", and ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"-", "1"}], "\[LessEqual]", "v", "\[LessEqual]", "1"}],
TraditionalForm]],ExpressionUUID->"de43f857-7575-4584-8bcb-5d924897d84e"],
", and oriented by ",
Cell[BoxData[
FormBox[
RowBox[{
StyleBox["n",
FontWeight->"Bold",
FontSlant->"Plain"],
StyleBox["=",
FontWeight->"Bold"],
RowBox[{
SubscriptBox[
StyleBox["T",
FontWeight->"Bold",
FontSlant->"Plain"], "u"], "\[Times]",
SubscriptBox[
StyleBox["T",
FontWeight->"Bold",
FontSlant->"Plain"], "v"]}]}], TraditionalForm]],ExpressionUUID->
"19e3ff78-a257-4ea4-a11e-e37b2f2ea437"],
"."
}], "Text",
CellChangeTimes->{{3.40294606353125*^9, 3.4029461295*^9},
3.4039949865625*^9, {3.404146386265625*^9, 3.40414640284375*^9}, {
3.404218548375*^9, 3.404218661359375*^9}, {3.40421869528125*^9,
3.404218710921875*^9}, {3.404218807421875*^9, 3.40421881825*^9}, {
3.40422241525*^9, 3.404222548515625*^9}, {3.4054387121875*^9,
3.4054387600625*^9}, 3.4055167105625*^9, {3.4082953065*^9,
3.408295333125*^9}, {3.80065603673629*^9, 3.800656039016631*^9}},
TextAlignment->Left,
TextJustification->0,ExpressionUUID->"cf0b3c56-7c6d-4679-8ae8-70985c972eb2"],
Cell[TextData[{
"10)\t Find the curl of the vector field ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
RowBox[{"ln", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ")"}]}], ",",
RowBox[{"x", "/", " ", "z"}], " ", ",",
RowBox[{
SuperscriptBox["e", "x"], "sin", " ",
RowBox[{"(",
RowBox[{"y", " ", "z"}], ")"}]}]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"aae22f30-3994-4d17-b8eb-0b8d6e679680"]
}], "Text",
CellChangeTimes->{{3.40294606353125*^9, 3.4029461295*^9},
3.4039949865625*^9, {3.404146386265625*^9, 3.40414640284375*^9}, {
3.404218548375*^9, 3.404218661359375*^9}, {3.40421869528125*^9,
3.404218710921875*^9}, {3.404218807421875*^9, 3.40421881825*^9}, {
3.40422241525*^9, 3.404222548515625*^9}, {3.404236007*^9,
3.404236010671875*^9}, {3.404309541453125*^9, 3.40430954515625*^9},
3.40434467890625*^9, {3.404344840609375*^9, 3.404344844265625*^9}, {
3.404385282875*^9, 3.404385359359375*^9}, {3.405292748234375*^9,
3.405292753859375*^9}, {3.405439674375*^9, 3.40543969425*^9},
3.40551677034375*^9, 3.4953818606642895`*^9, {3.4976216389532957`*^9,
3.4976216625364757`*^9}, 3.4976218242767754`*^9, {3.497621860138229*^9,
3.4976219324702806`*^9}, {3.497625736698733*^9, 3.4976257376047792`*^9}, {
3.5027247975197124`*^9, 3.502724814163746*^9}, {3.800656071168786*^9,
3.800656091823306*^9}},
TextAlignment->Left,
TextJustification->0,ExpressionUUID->"4e0a2898-8b83-4894-a77d-03500b946421"],
Cell[TextData[{
"11) Use Stokes's Theorem to compute the flux of the curl of the vector \
field ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
RowBox[{"tan", "(",
RowBox[{"x", " ", "y", " ", "z"}], ")"}], ",",
SuperscriptBox["e",
RowBox[{"y", "-",
RowBox[{"x", " ", "z"}]}]], ",",
RowBox[{"sec", "(",
RowBox[{
SuperscriptBox["y", "2"], "x"}], ")"}]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"5b3ceab6-344a-47ee-8066-8acc6131700e"],
" cross the surface ",
StyleBox["S, where S",
FontSlant->"Italic"],
" the upper hemisphere of radius 4.\n"
}], "Text",
CellChangeTimes->{{3.40294606353125*^9, 3.4029461295*^9},
3.4039949865625*^9, {3.404146386265625*^9, 3.40414640284375*^9}, {
3.404218548375*^9, 3.404218661359375*^9}, {3.40421869528125*^9,
3.404218710921875*^9}, {3.404218807421875*^9, 3.404218899375*^9}, {
3.404218957140625*^9, 3.404219470953125*^9}, {3.4042215186875*^9,
3.40422151890625*^9}, {3.404222564453125*^9, 3.404222619265625*^9},
3.404344683953125*^9, {3.40434485171875*^9, 3.40434487896875*^9}, {
3.40438536978125*^9, 3.404385405578125*^9}, {3.405292947296875*^9,
3.405292947734375*^9}, {3.40543970246875*^9, 3.405439720484375*^9},
3.405516771484375*^9, {3.408295846125*^9, 3.4082958463125*^9},
3.495381862195579*^9, {3.497621937936966*^9, 3.497621965614011*^9}, {
3.4976257466183853`*^9, 3.4976257741122255`*^9}, {3.497626393551443*^9,
3.497626461514933*^9}, {3.4976265092658844`*^9, 3.497626512358684*^9}, {
3.497626601565646*^9, 3.4976266055956583`*^9}, {3.4976268390110264`*^9,
3.497627033758177*^9}, {3.497627083103506*^9, 3.497627137323991*^9}, {
3.4976271746533103`*^9, 3.497627246749571*^9}, {3.497627276860873*^9,
3.4976273172853355`*^9}, {3.5027248474205313`*^9, 3.502724853905736*^9}, {
3.8006561223919888`*^9, 3.8006561890269938`*^9}},
TextAlignment->Left,
TextJustification->0,ExpressionUUID->"271a1983-0fcd-4d98-88a1-983fbdff103f"],
Cell[TextData[{
"12)\t Find the divergence of the given vector field ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
RowBox[{"x", " ", "y", " ", "z"}], ",",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"x", " ", "y"}], "+",
RowBox[{"y", " ", "z"}], "+",
RowBox[{"x", " ", "z"}]}]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"03de43fd-ec43-492c-8a18-084e765abb31"]
}], "Text",
CellChangeTimes->{{3.40294606353125*^9, 3.4029461295*^9},
3.4039949865625*^9, {3.404146386265625*^9, 3.40414640284375*^9}, {
3.404218548375*^9, 3.404218661359375*^9}, {3.40421869528125*^9,
3.404218710921875*^9}, {3.404218807421875*^9, 3.404218899375*^9}, {
3.404218957140625*^9, 3.404219470953125*^9}, {3.4042215186875*^9,
3.40422151890625*^9}, {3.404222564453125*^9, 3.404222619265625*^9},
3.404344683953125*^9, {3.40434485171875*^9, 3.404344898796875*^9}, {
3.404385411265625*^9, 3.404385496109375*^9}, {3.405292778609375*^9,
3.405292801171875*^9}, {3.405439730890625*^9, 3.40543977571875*^9},
3.405516777640625*^9, 3.4953818636799917`*^9, {3.4953819358849654`*^9,
3.495381950994727*^9}, {3.497628778102254*^9, 3.4976287984458733`*^9},
3.4976290422418766`*^9, {3.497629204805417*^9, 3.4976292639620457`*^9}, {
3.497629301243698*^9, 3.4976293869953446`*^9}, {3.5027249371507654`*^9,
3.502724941557579*^9}, {3.800656207235241*^9, 3.800656230441813*^9}},
TextAlignment->Left,
TextJustification->0,ExpressionUUID->"a231a849-988c-4082-bb02-76261fe78d14"],
Cell[TextData[{
"13)\t Use the Divergence Theorem to calculate the flux of the vector field ",
StyleBox["F",
FontWeight->"Bold"],
" across the surface ",
StyleBox["S, where ",
FontSlant->"Italic"],
" ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
StyleBox["F",
FontWeight->"Bold",
FontSlant->"Plain"], "(",
RowBox[{"x", ",", "y", ",", "z"}], ")"}], "=",
RowBox[{"\[LeftAngleBracket]", " ",
RowBox[{
RowBox[{"x", " ",
SuperscriptBox["e",
RowBox[{"z", " "}]]}], ",",
SuperscriptBox["y", "2"], ",",
RowBox[{"y", "+",
RowBox[{"z", " ", "x"}]}]}], "\[RightAngleBracket]"}]}],
TraditionalForm]],ExpressionUUID->"e072beb1-ad7a-4851-b679-653499720d8c"],
" and ",
Cell[BoxData[
FormBox["S", TraditionalForm]],ExpressionUUID->
"b00ca510-33a3-4ebf-a15b-3126a8fa955c"],
" is tetrahedron bounded by the plane ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{"3", "x"}], "+",
RowBox[{"4", "y"}], "+",
RowBox[{"5", "z"}]}], "=", "15"}], TraditionalForm]],ExpressionUUID->
"1845bad1-51d5-408a-a00b-2fbf72e5fb6a"],
" and the coordinate planes in the first octant."
}], "Text",
CellChangeTimes->{{3.40294606353125*^9, 3.4029461295*^9},
3.4039949865625*^9, {3.404146386265625*^9, 3.40414640284375*^9}, {
3.404218548375*^9, 3.404218661359375*^9}, {3.40421869528125*^9,
3.404218710921875*^9}, {3.404218807421875*^9, 3.404218899375*^9}, {
3.404218957140625*^9, 3.404219470953125*^9}, {3.4042215186875*^9,
3.40422151890625*^9}, {3.404222564453125*^9, 3.404222619265625*^9},
3.404344683953125*^9, {3.40434485171875*^9, 3.404344898796875*^9}, {
3.404385411265625*^9, 3.404385496109375*^9}, {3.405292778609375*^9,
3.405292854359375*^9}, {3.405292896234375*^9, 3.405292933*^9}, {
3.4054398308125*^9, 3.4054398421875*^9}, 3.405516780546875*^9, {
3.405530357890625*^9, 3.4055303726875*^9}, 3.495381875399042*^9,
3.4972863185070972`*^9, {3.49762880136773*^9, 3.497628833305025*^9}, {
3.497629559717411*^9, 3.49762960576517*^9}, {3.497629748908543*^9,
3.497629752955496*^9}, {3.497631215374199*^9, 3.4976312170617313`*^9}, {
3.4976315497523108`*^9, 3.4976315899549212`*^9}, {3.4976316782194166`*^9,
3.497631768109169*^9}, {3.502724963404125*^9, 3.50272496707647*^9}, {
3.800656255137807*^9, 3.8006562736797237`*^9}},
TextAlignment->Left,
TextJustification->0,ExpressionUUID->"399e9352-8f36-4ee4-b196-bcf77abe8a5f"]
}, Open ]]
},
WindowToolbars->{"RulerBar", "EditBar"},
WindowSize->{1440., 741.75},
WindowMargins->{{Automatic, 1147.2}, {-15, Automatic}},
FrontEndVersion->"12.3 for Microsoft Windows (64-bit) (July 9, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"70bd6056-a08c-4e79-b757-0d69e69d2842"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 423, 9, 85, "Subtitle",ExpressionUUID->"ea3c182f-33ba-4957-8bf6-08f144281741"],
Cell[1006, 33, 2808, 66, 73, "Text",ExpressionUUID->"c154f282-4207-417c-8ee1-895b89485aa2"],
Cell[CellGroupData[{
Cell[3839, 103, 1331, 41, 86, "Input",ExpressionUUID->"118c63b9-121d-4fbb-b358-1ffc703912ce"],
Cell[5173, 146, 172, 3, 48, "Output",ExpressionUUID->"170ecad8-ffb4-482b-817b-b27633ee0f4a"],
Cell[5348, 151, 315, 9, 48, "Output",ExpressionUUID->"59ce63f5-e263-4502-9b9b-a6441dc52b01"],
Cell[5666, 162, 241, 6, 51, "Output",ExpressionUUID->"150646fc-af6c-4ab9-afb5-c23e09eea286"]
}, Open ]],
Cell[5922, 171, 3879, 98, 162, "Text",ExpressionUUID->"10a7a4b4-4d71-49d7-a627-f6318fd9516d"],
Cell[CellGroupData[{
Cell[9826, 273, 2761, 79, 181, "Input",ExpressionUUID->"51410cea-5b1b-4dbf-a804-f445beeecefd"],
Cell[12590, 354, 355, 9, 48, "Output",ExpressionUUID->"193642ab-bf0f-41c2-bb13-710389d826e1"],
Cell[12948, 365, 47212, 774, 315, "Output",ExpressionUUID->"ed0bfc0f-2ccf-44df-baf1-e1ff8ba55f77"],
Cell[60163, 1141, 380, 9, 48, "Output",ExpressionUUID->"9e6011c8-6056-46be-9954-741ba803b666"],
Cell[60546, 1152, 56208, 921, 305, "Output",ExpressionUUID->"ad02ee10-ab8c-41f3-adda-459453adfeaf"],
Cell[116757, 2075, 532, 14, 48, "Output",ExpressionUUID->"221c4228-71cf-4fe0-99de-6f98a8ffd253"],
Cell[117292, 2091, 73124, 1192, 312, "Output",ExpressionUUID->"866776a1-6f46-43a5-be26-aed13a2ed7ed"]
}, Open ]],
Cell[190431, 3286, 154, 3, 28, InheritFromParent,ExpressionUUID->"3f5e3506-23ba-48c9-b341-e920223d6424"],
Cell[190588, 3291, 2710, 54, 58, "Text",ExpressionUUID->"bd5bb284-e2a9-42f1-898f-7df609e5b7ec"],
Cell[193301, 3347, 620, 19, 48, "Input",ExpressionUUID->"80f031c0-ab76-49cd-bec0-0270698fdf70"],
Cell[193924, 3368, 2896, 66, 71, "Text",ExpressionUUID->"63de7db7-d7b6-4f92-87d0-727728a80fcd"],
Cell[CellGroupData[{
Cell[196845, 3438, 1335, 38, 67, "Input",ExpressionUUID->"877a8fb8-5e6d-42a4-a0ea-14e3bf8bf9a2"],
Cell[198183, 3478, 169, 3, 48, "Output",ExpressionUUID->"1f8947f9-bc76-4b9d-9560-39bfa2dd20cf"],
Cell[198355, 3483, 318, 9, 48, "Output",ExpressionUUID->"0d128d82-1ebb-4d85-b486-60efe177d90b"]
}, Open ]],
Cell[198688, 3495, 4152, 96, 135, "Text",ExpressionUUID->"7693d929-5ae7-43be-9192-a2871f213c71"],
Cell[CellGroupData[{
Cell[202865, 3595, 1310, 36, 67, "Input",ExpressionUUID->"0d16240e-b006-4c32-9979-a594eb875700"],
Cell[204178, 3633, 269, 7, 48, "Output",ExpressionUUID->"dea29fe0-36f5-4b47-aed8-87fd5ecf728b"],
Cell[204450, 3642, 334, 9, 48, "Output",ExpressionUUID->"9d4fd733-55ad-4b1e-8042-a23777060f81"]
}, Open ]],
Cell[204799, 3654, 2714, 76, 37, "Text",ExpressionUUID->"bfd897be-4649-48bf-b828-ccbcce95175e"],
Cell[207516, 3732, 2778, 79, 37, "Text",ExpressionUUID->"3fe399b0-16d0-4a55-bed9-4617fbfba21b"],
Cell[210297, 3813, 2794, 82, 60, "Text",ExpressionUUID->"7ecefb69-3227-45b1-84ae-d011ed084aea"],
Cell[213094, 3897, 2890, 92, 37, "Text",ExpressionUUID->"cf0b3c56-7c6d-4679-8ae8-70985c972eb2"],
Cell[215987, 3991, 1826, 40, 36, "Text",ExpressionUUID->"4e0a2898-8b83-4894-a77d-03500b946421"],
Cell[217816, 4033, 2210, 46, 59, "Text",ExpressionUUID->"271a1983-0fcd-4d98-88a1-983fbdff103f"],
Cell[220029, 4081, 1839, 38, 36, "Text",ExpressionUUID->"a231a849-988c-4082-bb02-76261fe78d14"],
Cell[221871, 4121, 2481, 58, 59, "Text",ExpressionUUID->"399e9352-8f36-4ee4-b196-bcf77abe8a5f"]
}, Open ]]
}
]
*)