Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/statistical_based/stsa_wlr.m
2024-04-25 18:38:09 -04:00

170 lines
4.0 KiB
Matlab

function stsa_wlr(filename,outfile)
%
% Implements the Bayesian estimator based on the weighted likelihood ratio
% distortion measure [1, Eq. 37].
%
% Usage: stsa_wlr(noisyFile, outputFile)
%
% infile - noisy speech file in .wav format
% outputFile - enhanced output file in .wav format
%
%
% Example call: stsa_wlr('sp04_babble_sn10.wav','out_wlr.wav');
%
% References:
% [1] Loizou, P. (2005). Speech enhancement based on perceptually motivated
% Bayesian estimators of the speech magnitude spectrum. IEEE Trans. on Speech
% and Audio Processing, 13(5), 857-869.
%
% Author: Philipos C. Loizou
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin<2
fprintf('Usage: stsa_wlr inFile outFile.wav \n\n');
return;
end
[x, Srate, bits]= wavread( filename);
% =============== Initialize variables ===============
%
len=floor(20*Srate/1000); % Frame size in samples
if rem(len,2)==1, len=len+1; end;
PERC=50; % window overlap in percent of frame size
len1=floor(len*PERC/100);
len2=len-len1;
win=hanning(len); %tukey(len,PERC); % define window
% Noise magnitude calculations - assuming that the first 6 frames is noise/silence
%
nFFT=len;
nFFT2=len/2;
noise_mean=zeros(nFFT,1);
j=1;
for k=1:5
noise_mean=noise_mean+abs(fft(win.*x(j:j+len-1),nFFT));
j=j+len;
end
noise_mu=noise_mean/5;
noise_mu2=noise_mu.^2;
%--- allocate memory and initialize various variables
img=sqrt(-1);
x_old=zeros(len1,1);
Nframes=floor(length(x)/len2)-1;
xfinal=zeros(Nframes*len2,1);
xinterv=0.001:0.01:10;
k=1;
aa=0.98;
%=============================== Start Processing =======================================================
%
fprintf('This might take some time ...\n')
for n=1:Nframes
insign=win.*x(k:k+len-1);
%--- Take fourier transform of frame
spec=fft(insign,nFFT);
sig=abs(spec); % compute the magnitude
sig2=sig.^2;
gammak=min(sig2./noise_mu2,40); % post SNR. Limit it to avoid overflows
if n==1
ksi=aa+(1-aa)*max(gammak-1,0);
else
ksi=aa*Xk_prev./noise_mu2 + (1-aa)*max(gammak-1,0); % a priori SNR
end
vk=ksi.*gammak./(1+ksi);
xx=solve_wlr(vk,gammak,sig,xinterv); % solves Eq. 37 in [1]
sig_hat=xx;
Xk_prev=sig_hat.^2;
xi_w= ifft( sig_hat.* exp(img*angle(spec)));
xi_w= real( xi_w);
% --- Overlap and add ---------------
%
xfinal(k:k+ len2-1)= x_old+ xi_w(1:len1);
x_old= xi_w(len1+ 1: len);
if rem(n,20)==0, fprintf('Frame: %d Percent completed:%4.2f \n',n,n*100/Nframes); end;
k=k+len2;
end
%========================================================================================
wavwrite(xfinal,Srate,16,outfile);
%==========================================================================
function x=solve_wlr(vk,gammak,Yk,xx);
% solves non-linear Eq. 37 in [1]
%
Len=length(vk);
L2=Len/2+1;
lk05=sqrt(vk).*Yk./gammak;
Ex=gamma(1.5)*lk05.*confhyperg(-0.5,1,-vk,100);
Elogx=1-0.5*(2*log(lk05)+log(vk)+expint(vk));
x=zeros(Len,1);
for n=1:L2
a=Elogx(n);
b=Ex(n);
ff=sprintf('log(x)+%f - %f/x',a,b);
y=log(xx)+a-b./xx;
bet=xx(1); tox=200;
if y(1)<0
ind=find(y>0);
bet=xx(1)/2;
tox=xx(ind(1));
[x(n),fval,flag]=fzero(inline(ff),[bet tox]);
if flag<0
x(n)=x(n-1);
end
else
ind=find(y<0);
if ~isempty(ind)
bet=xx(1);
tox=xx(ind(1));
[x(n),fval]=fzero(inline(ff),[bet tox]);
else
x(n)=0.001; % spectral floor
end
end
end
x(L2+1:Len)=flipud(x(2:L2-1));