Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/statistical_based/mmse.m
2024-04-25 18:38:09 -04:00

151 lines
3.9 KiB
Matlab

function mmse(filename,outfile,SPU)
%
% Implements the MMSE algorithm [1].
%
% Usage: mmse(noisyFile, outputFile, SPU)
%
% infile - noisy speech file in .wav format
% outputFile - enhanced output file in .wav format
% SPU - if 1, includes speech-presence uncertainty
% if 0, doesnt include speech-presence uncertainty
%
%
% Example call: mmse('sp04_babble_sn10.wav','out_mmse.wav',1);
%
% References:
% [1] Ephraim, Y. and Malah, D. (1985). Speech enhancement using a minimum
% mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust.,
% Speech, Signal Process., ASSP-23(2), 443-445.
%
% Authors: Philipos C. Loizou
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin<3
fprintf('Usage: mmse(infile.wav,outfile.wav,SPU) \n');
fprintf('where SPU=1 - includes speech presence uncertainty\n');
fprintf(' SPU=0 - does not includes speech presence uncertainty\n\n');
return;
end;
if SPU~=1 & SPU~=0
error('ERROR: SPU needs to be either 1 or 0.');
end
[x, Srate, bits]= wavread( filename);
% =============== Initialize variables ===============
len=floor(20*Srate/1000); % Frame size in samples
if rem(len,2)==1, len=len+1; end;
PERC=50; % window overlap in percent of frame size
len1=floor(len*PERC/100);
len2=len-len1;
win=hamming(len); %tukey(len,PERC); % define window
% Noise magnitude calculations - assuming that the first 6 frames is noise/silence
%
nFFT=2*len;
j=1;
noise_mean=zeros(nFFT,1);
for k=1:6
noise_mean=noise_mean+abs(fft(win.*x(j:j+len-1),nFFT));
j=j+len;
end
noise_mu=noise_mean/6;
noise_mu2=noise_mu.^2;
%--- allocate memory and initialize various variables
k=1;
img=sqrt(-1);
x_old=zeros(len1,1);
Nframes=floor(length(x)/len2)-1;
xfinal=zeros(Nframes*len2,1);
% --------------- Initialize parameters ------------
%
k=1;
aa=0.98;
eta= 0.15;
mu=0.98;
c=sqrt(pi)/2;
qk=0.3;
qkr=(1-qk)/qk;
ksi_min=10^(-25/10);
%=============================== Start Processing =======================================================
%
for n=1:Nframes
insign=win.*x(k:k+len-1);
%--- Take fourier transform of frame
%
spec=fft(insign,nFFT);
sig=abs(spec); % compute the magnitude
sig2=sig.^2;
gammak=min(sig2./noise_mu2,40); % posteriori SNR
if n==1
ksi=aa+(1-aa)*max(gammak-1,0);
else
ksi=aa*Xk_prev./noise_mu2 + (1-aa)*max(gammak-1,0);
% decision-direct estimate of a priori SNR
ksi=max(ksi_min,ksi); % limit ksi to -25 dB
end
log_sigma_k= gammak.* ksi./ (1+ ksi)- log(1+ ksi);
vad_decision= sum( log_sigma_k)/ len;
if (vad_decision< eta) % noise only frame found
noise_mu2= mu* noise_mu2+ (1- mu)* sig2;
end
% ===end of vad===
vk=ksi.*gammak./(1+ksi);
[j0,err]=besseli(0,vk/2);
[j1,err2]=besseli(1,vk/2);
if any(err) | any(err2)
fprintf('ERROR! Overflow in Bessel calculation in frame: %d \n',n);
else
C=exp(-0.5*vk);
A=((c*(vk.^0.5)).*C)./gammak;
B=(1+vk).*j0+vk.*j1;
hw=A.*B;
end
% --- estimate speech presence probability
%
if SPU==1
evk=exp(vk);
Lambda=qkr*evk./(1+ksi);
pSAP=Lambda./(1+Lambda);
sig=sig.*hw.*pSAP;
else
sig=sig.*hw;
end
Xk_prev=sig.^2; % save for estimation of a priori SNR in next frame
xi_w= ifft( sig .* exp(img*angle(spec)),nFFT);
xi_w= real( xi_w);
xfinal(k:k+ len2-1)= x_old+ xi_w(1:len1);
x_old= xi_w(len1+ 1: len);
k=k+len2;
end
%========================================================================================
wavwrite(xfinal,Srate,16,outfile);