Rowan-Classes/7th-Semester-Fall-2024/ECOMMS/homework/homework-2/problem-2.py
2024-11-10 14:46:30 -05:00

34 lines
779 B
Python

import numpy as np
f_m = 0.2
f_c = 2*f_m
A_c = 1
a = 1
def g(t):
return A_c*np.cos(2*np.pi*f_m*t) + A_c*np.cos(2*np.pi*f_c*t)
# first derivative of g(t)
def dg_dt(t):
return -(2*np.pi*f_m)*A_c*np.sin(2*np.pi*f_m*t) + -(2*np.pi*f_c)*A_c*np.sin(2*np.pi*f_c*t)
# second derivative of g(t)
def ddg_dtt(t):
return -(2*np.pi*f_m)**2*A_c*np.cos(2*np.pi*f_m*t) + -(2*np.pi*f_c)**2*A_c*np.cos(2*np.pi*f_c*t)
# use Newton's method to find the maximum of the function
def newton_method(t):
for i in range(3):
t = t - dg_dt(t)/ddg_dtt(t)
print(f"Iteration {i+1}: {t}\t{g(t)}")
def dc_dt(t):
return A_c*a*np.pi*f_c*np.cos(2*np.pi*f_c*t)
if __name__ == '__main__':
T_c = 1/f_c
t_min = T_c/2
newton_method(t_min)
newton_method(0)