Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/statistical_based/logmmse_SPU.m
2024-04-25 18:38:09 -04:00

288 lines
7.4 KiB
Matlab

function logmmse_SPU(filename,outfile,option)
%
% Implements the logMMSE algorithm with signal-presence uncertainty (SPU) [1].
% Four different methods for estimating the a priori probability of speech absence
% (P(H0)) are implemented.
%
% Usage: logmmse_SPU(noisyFile, outputFile, option)
%
% infile - noisy speech file in .wav format
% outputFile - enhanced output file in .wav format
% option - method used to estimate the a priori probability of speech
% absence, P(Ho):
% 1 - hard decision (Soon et al. [2])
% 2 - soft decision (Soon et al. [2])
% 3 - Malah et al.(1999) - ICASSP
% 4 - Cohen (2002) [1]
%
%
% Example call: logmmse_SPU('sp04_babble_sn10.wav','out_logSPU.wav',1);
%
% References:
% [1] Cohen, I. (2002). Optimal speech enhancement under signal presence
% uncertainty using log-spectra amplitude estimator. IEEE Signal Processing
% Letters, 9(4), 113-116.
% [2] Soon, I., Koh, S., and Yeo, C. (1999). Improved noise suppression
% filter using self-adaptive estimator of probability of speech absence.
% Signal Processing, 75, 151-159.
%
% Author: Philipos C. Loizou
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin<3
fprintf('Usage: logmmse_SPU(infile.wav,outfile.wav,option) \n');
fprintf('where option = \n');
fprintf(' 1 - hard decision ( Soon et al)\n');
fprintf(' 2 - soft decision (Soon et al.)\n');
fprintf(' 3 - Malah et al.(1999) \n');
fprintf(' 4 - Cohen (2002) \n');
return;
end;
if option<1 | option>4 | rem(option,1)~=0
error('ERROR! option needs to be an integer between 1 and 4.\n\n');
end
[x, Srate, bits]= wavread( filename);
% =============== Initialize variables ===============
%
len=floor(20*Srate/1000); % Frame size in samples
if rem(len,2)==1, len=len+1; end;
PERC=50; % window overlap in percent of frame size
len1=floor(len*PERC/100);
len2=len-len1;
win=hamming(len); % define window
% Noise magnitude calculations - assuming that the first 6 frames is
% noise/silence
%
nFFT=len;
nFFT2=floor(len/2);
noise_mean=zeros(nFFT,1);
j=1;
for k=1:6
noise_mean=noise_mean+abs(fft(win.*x(j:j+len-1),nFFT));
j=j+len;
end
noise_mu=noise_mean/6;
noise_mu2=noise_mu.^2;
%--- allocate memory and initialize various variables
aa=0.98;
mu=0.98;
eta=0.15;
img=sqrt(-1);
x_old=zeros(len1,1);
Nframes=floor(length(x)/len2)-floor(len/len2);
xfinal=zeros(Nframes*len2,1);
if option==4 % Cohen's method
global zetak zeta_fr_old z_peak
len2a=len/2+1;
zetak=zeros(len2a,1);
zeta_fr_old=1000;
z_peak=0;
end;
%=============================== Start Processing =======================================================
%
qk=0.5*ones(len,1);
ksi_old=zeros(len,1);
ksi_min=10^(-25/10);
%qkr=(1-qk)/qk;
%qk2=1/(1-qk);
Gmin=10^(-20/10); % needed for Cohen's implementation
k=1;
for n=1:Nframes
insign=win.*x(k:k+len-1);
%--- Take fourier transform of frame
spec=fft(insign,nFFT);
sig=abs(spec); % compute the magnitude
sig2=sig.^2;
gammak=min(sig2./noise_mu2,40); % post SNR
if n==1
ksi=aa+(1-aa)*max(gammak-1,0);
else
ksi=aa*Xk_prev./noise_mu2 + (1-aa)*max(gammak-1,0);
% a priori SNR
ksi=max(ksi_min,ksi); % limit ksi to -25 dB
end
log_sigma_k= gammak.* ksi./ (1+ ksi)- log(1+ ksi);
vad_decision= sum( log_sigma_k)/ len;
if (vad_decision< eta)
% noise only frame found
noise_mu2= mu* noise_mu2+ (1- mu)* sig2;
end
% ===end of vad===
%ksi=qk2*ksi;
A=ksi./(1+ksi);
vk=A.*gammak;
ei_vk=0.5*expint(vk);
hw=A.*exp(ei_vk);
% --- estimate conditional speech-presence probability ---------------
%
[qk]=est_sap(qk,ksi,ksi_old,gammak,option); % estimate P(Ho)- a priori speech absence prob.
pSAP = (1-qk)./(1-qk+qk.*(1+ksi).*exp(-vk)); % P(H1 | Yk)
% ---- Cohen's 2002 ------
%
Gmin2=Gmin.^(1-pSAP); % Cohen's (2002) - Eq 8
Gcohen=(hw.^pSAP).*Gmin2;
sig = sig.*Gcohen;
%----------------------------
Xk_prev=sig.^2;
ksi_old=ksi; % needed for Cohen's method for estimating q
xi_w= ifft( sig .* exp(img*angle(spec)));
xi_w= real( xi_w);
% --------- Overlap and add ---------------
%
xfinal(k:k+ len2-1)= x_old+ xi_w(1:len1);
x_old= xi_w(len1+ 1: len);
k=k+len2;
end
%========================================================================================
wavwrite(xfinal,Srate,16,outfile);
%--------------------------- E N D -----------------------------------------
function [qk]=est_sap(qk,xsi,xsi_old,gammak,type)
% function returns a priori probability of speech absence, P(Ho)
%
global zetak zeta_fr_old z_peak
if type ==1 % hard-decision: Soon et al.
beta=0.1;
dk=ones(length(xsi),1);
i0=besseli(0,2*(gammak.*xsi).^0.5);
temp=exp(-xsi).*i0;
indx=find(temp>1);
dk(indx)=0;
qk=beta*dk + (1-beta)*qk;
elseif type==2 % soft-decision: Soon et al.
beta=0.1;
i0=besseli(0,2*(gammak.*xsi).^0.5);
temp=exp(-xsi).*i0;
P_Ho=1./(1+temp);
P_Ho=min(1,P_Ho);
qk=beta*P_Ho + (1-beta)*qk;
elseif type==3 % Malah et al. (1999)
if mean(gammak(1:floor(length(gammak)/2)))> 2.4 % VAD detector
beta=0.95;
gamma_th=0.8;
dk=ones(length(xsi),1);
indx=find(gammak>gamma_th);
dk(indx)=0;
qk=beta*qk+(1-beta)*dk;
end
elseif type==4 % Cohen (2002)
beta=0.7;
len=length(qk);
len2=len/2+1;
zetak=beta*zetak+(1-beta)*xsi_old(1:len2);
z_min=0.1; z_max=0.3162;
C=log10(z_max/z_min);
zp_min=1; zp_max=10;
zeta_local=smoothing(zetak,1);
zeta_global=smoothing(zetak,15);
Plocal=zeros(len2,1); % estimate P_local
imax=find(zeta_local>z_max);
Plocal(imax)=1;
ibet=find(zeta_local>z_min & zeta_local<z_max);
Plocal(ibet)=log10(zeta_local(ibet)/z_min)/C;
Pglob=zeros(len2,1); % estimate P_global
imax=find(zeta_global>z_max);
Pglob(imax)=1;
ibet=find(zeta_global>z_min & zeta_global<z_max);
Pglob(ibet)=log10(zeta_global(ibet)/z_min)/C;
zeta_fr=mean(zetak); % estimate Pframe
if zeta_fr>z_min
if zeta_fr>zeta_fr_old
Pframe=1;
z_peak=min(max(zeta_fr,zp_min),zp_max);
else
if zeta_fr <=z_peak*z_min, Pframe=0;
elseif zeta_fr>= z_peak*z_max, Pframe=1;
else, Pframe=log10(zeta_fr/z_peak/z_min)/C;
end
end
else
Pframe=0;
end
zeta_fr_old=zeta_fr;
qk2 = 1- Plocal.*Pglob*Pframe; % estimate prob of speech absence
qk2= min(0.95,qk2);
qk = [qk2; flipud(qk2(2:len2-1))];
end
%----------------------------------------------
function y=smoothing (x,N);
len=length(x);
win=hanning(2*N+1);
win1=win(1:N+1);
win2=win(N+2:2*N+1);
y1=filter(flipud(win1),[1],x);
x2=zeros(len,1);
x2(1:len-N)=x(N+1:len);
y2=filter(flipud(win2),[1],x2);
y=(y1+y2)/norm(win,2);