Rowan-Classes/7th-Semester-Fall-2024/ECOMMS/notes/ecomms-notes.tex

43 lines
1.0 KiB
TeX

\documentclass{report}
\input{preamble}
\input{macros}
\input{letterfonts}
\title{\Huge{Electrical Communication Systems}}
\author{\huge{Aidan Sharpe}}
\date{}
\begin{document}
\maketitle
\newpage% or \cleardoublepage
% \pdfbookmark[<level>]{<title>}{<dest>}
\pdfbookmark[section]{\contentsname}{toc}
\tableofcontents
\pagebreak
\chapter{}
$$\boxed{\text{Source}} \to \boxed{\text{Transmitter}} \to \boxed{\text{Channel}} \to \boxed{\text{Receiver}} \to \boxed{\text{Sink}}$$
\section{The Fundamental Transmission Limit}
\thm{Shannon's Theorem}
{
The theoretical limit for error-free transmission in a communications system in the presence of noise (the channel capacity) is a function of the channel bandwidth $B$ and the signal to noise power ration $S/N$.
\begin{equation}
C = B \log_2(1 + S/N)
\end{equation}
}
\ex{Shannon's Theorem}
{
Given a 1[W] signal perturbed by 1[mW] of noise, the SNR is 1000. In dB, the SNR is
\begin{equation}
\text{dB} = 10 \log_{10}(\text{SNR}).
\end{equation}
In this case, the SNR is 30[dB].
}
\end{document}