Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/Lab-02/dsp-lab-02.aux
2024-02-23 21:42:45 -05:00

38 lines
3.3 KiB
TeX

\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2}Results \& Discussion}{1}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Analysis of Amplitude Modulation}{1}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The Fourier transform of a white noise signal carried at 10[kHz]\relax }}{1}{}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:AM_Fourier_Whitenoise}{{1}{1}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The Fourier transform of a signal with a triangular spectrum carried at 10[kHz]\relax }}{2}{}\protected@file@percent }
\newlabel{fig:carried_triangle}{{2}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Periodicity and Sampling Frequency}{2}{}\protected@file@percent }
\newlabel{eqn:periodicity_condition}{{2}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Plotting Discrete Time Signals}{2}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Sampling a periodic signal at different frequencies\relax }}{3}{}\protected@file@percent }
\newlabel{fig:periodic_sample}{{3}{3}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Shifted and scaled impulses\relax }}{3}{}\protected@file@percent }
\newlabel{fig:various_impulses}{{4}{3}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Shifted and scaled unit steps\relax }}{4}{}\protected@file@percent }
\newlabel{fig:various_steps}{{5}{4}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces A discrete ramp function\relax }}{4}{}\protected@file@percent }
\newlabel{fig:discrete_ramp}{{6}{4}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Discrete quadratic signal\relax }}{5}{}\protected@file@percent }
\newlabel{fig:discrete_quadratic}{{7}{5}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Oscillating exponential decay\relax }}{5}{}\protected@file@percent }
\newlabel{fig:osc_exp_decay}{{8}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Bounded Signals}{5}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Boundedness of a cosine\relax }}{6}{}\protected@file@percent }
\newlabel{fig:cosine_boundedness}{{9}{6}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces More complex boundedness\relax }}{6}{}\protected@file@percent }
\newlabel{fig:complex_boundedness}{{10}{6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Energy of an Aperiodic Signal}{6}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces First 100 samples of $x[n]$ and its energy\relax }}{7}{}\protected@file@percent }
\newlabel{fig:aperiodic_energy}{{11}{7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6}The Modulo Operation}{7}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Applying the modulo operation to $x[n]$.\relax }}{8}{}\protected@file@percent }
\newlabel{fig:modulo}{{12}{8}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Conclusions}{8}{}\protected@file@percent }
\gdef \@abspage@last{9}