43 lines
1.0 KiB
TeX
43 lines
1.0 KiB
TeX
\documentclass{report}
|
|
|
|
\input{preamble}
|
|
\input{macros}
|
|
\input{letterfonts}
|
|
|
|
\title{\Huge{Electrical Communication Systems}}
|
|
\author{\huge{Aidan Sharpe}}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
\newpage% or \cleardoublepage
|
|
% \pdfbookmark[<level>]{<title>}{<dest>}
|
|
\pdfbookmark[section]{\contentsname}{toc}
|
|
\tableofcontents
|
|
\pagebreak
|
|
|
|
\chapter{}
|
|
|
|
$$\boxed{\text{Source}} \to \boxed{\text{Transmitter}} \to \boxed{\text{Channel}} \to \boxed{\text{Receiver}} \to \boxed{\text{Sink}}$$
|
|
|
|
\section{The Fundamental Transmission Limit}
|
|
\thm{Shannon's Theorem}
|
|
{
|
|
The theoretical limit for error-free transmission in a communications system in the presence of noise (the channel capacity) is a function of the channel bandwidth $B$ and the signal to noise power ration $S/N$.
|
|
\begin{equation}
|
|
C = B \log_2(1 + S/N)
|
|
\end{equation}
|
|
}
|
|
|
|
\ex{Shannon's Theorem}
|
|
{
|
|
Given a 1[W] signal perturbed by 1[mW] of noise, the SNR is 1000. In dB, the SNR is
|
|
\begin{equation}
|
|
\text{dB} = 10 \log_{10}(\text{SNR}).
|
|
\end{equation}
|
|
In this case, the SNR is 30[dB].
|
|
}
|
|
|
|
\end{document}
|