192 lines
5.4 KiB
TeX
192 lines
5.4 KiB
TeX
\hypertarget chapter-3}{%
|
|
\section{Chapter 3}\label{chapter-3}}
|
|
|
|
\hypertarget{example}{%
|
|
\subsubsection{Example}\label{example}}
|
|
|
|
Suppose there are 30 resistors, 7 of them do not work. You randomly
|
|
choose 3 of them. Let \(X\) be the number of defective resistors. Find
|
|
the probability distribution of \(X\).
|
|
|
|
\[ X = [0,3]\]
|
|
\[P(X=0) = { {7 \choose 0} {23 \choose 3} \over {30 \choose 3} } = 0.436\]
|
|
\[P(X=1) = { {7 \choose 1} {23 \choose 2} \over {30 \choose 3} } = 0.436\]
|
|
\[P(X=2) = { {7 \choose 2} {23 \choose 1} \over {30 \choose 3} } = 0.119\]
|
|
\[P(X=3) = { {7 \choose 3} {23 \choose 0} \over {30 \choose 3} } = 0.009\]
|
|
|
|
Probability distribution: \[P(X = x) =
|
|
\begin{cases}
|
|
0.436 & x=0 \\
|
|
0.436 & x=1 \\
|
|
0.119 & x=2 \\
|
|
0.009 & x=3
|
|
\end{cases}
|
|
\]
|
|
|
|
\hypertarget{the-cumulative-distribution-function}{%
|
|
\subsection{The Cumulative Distribution
|
|
Function}\label{the-cumulative-distribution-function}}
|
|
|
|
The cumulative distribution function (CDF), \(F(x)\), of a discrete
|
|
random variable, \(x\), with probability distribution, \(f(x)\), is:
|
|
\[F(x) = P(X \le x)\]
|
|
|
|
Find CDF for the example above: \[F(0) = P(X \le 0) = P(X = 0) = 0.436\]
|
|
\[F(1) = P(X \le 1) = P((X = 0) \cup (X=1)) = 0.872\]
|
|
\[F(2) = P(X \le 2) = P((X=0) \cup (X=1) \cup (X=2)) = 0.991\] Since 3
|
|
is the largest possible value for \(x\): \[F(3) = P(X \le 3) = 1\]
|
|
|
|
As a piecewise function: \[F(x) =
|
|
\begin{cases}
|
|
0 & x < 0 \\
|
|
0.436 & 0 \le x < 1 \\
|
|
0.872 & 1 \le x < 2 \\
|
|
0.991 & 2 \le x < 3 \\
|
|
1 & x \ge 3
|
|
\end{cases}\]
|
|
|
|
\hypertarget{exercise}{%
|
|
\subsubsection{Exercise}\label{exercise}}
|
|
|
|
Suppose that a days production of 850 manufactured parts contains 50
|
|
parts that to not conform to customer requirements. 2 parts are selected
|
|
at random from the batch. Let \(X\) be the number of non-conforming
|
|
parts.
|
|
|
|
\hypertarget{a}{%
|
|
\paragraph{a)}\label{a}}
|
|
|
|
Find the probability distribution for \(X\)
|
|
\[P(X = 0) = { {50 \choose 0} {800 \choose 2} \over {850 \choose 2 }} = 0.8857\]
|
|
\[P(X = 1) = { {50 \choose 1} {800 \choose 1} \over {850 \choose 2 }} = 0.1109\]
|
|
\[P(X = 2) = { {50 \choose 2} {800 \choose 0} \over {850 \choose 2 }} = 0.0034\]
|
|
|
|
\[P(X = x) =
|
|
\begin{cases}
|
|
0.8857 & x=0 \\
|
|
0.1109 & x=1 \\
|
|
0.0034 & x=2
|
|
\end{cases}
|
|
\]
|
|
|
|
\hypertarget{b}{%
|
|
\paragraph{b)}\label{b}}
|
|
|
|
Find the CDF \(F(x)\) \[F(x) =
|
|
\begin{cases}
|
|
0 & x < 0 \\
|
|
0.8857 & 0 \le x < 1 \\
|
|
0.9966 & 1 \le x < 2 \\
|
|
1 & x \ge 2
|
|
\end{cases}\]
|
|
|
|
\hypertarget{c}{%
|
|
\paragraph{c)}\label{c}}
|
|
|
|
Plot \(F(x)\):
|
|
|
|
\hypertarget{continuous-probability-distributions}{%
|
|
\subsection{Continuous Probability
|
|
Distributions}\label{continuous-probability-distributions}}
|
|
|
|
A continuous random variable is a variable that can take on any value
|
|
within a range. It takes on infinitely many possible value within the
|
|
range. \includegraphics{NormalDistribution.png}
|
|
|
|
For a continuous distribution, \(f(x)\): \[P(X = x) = 0\]
|
|
\[P(x_0 \le X \le x_1) = \int\limits_{x_0}^{x_1} f(x) dx\]
|
|
\[P(X \ge x_0) = \int\limits_{x_0}^{\infty} f(x) dx\]
|
|
|
|
\hypertarget{definition}{%
|
|
\subsubsection{Definition}\label{definition}}
|
|
|
|
The function, \(f(x)\), is a probability density function fo the
|
|
continuous random variable, \(X\), defined over \(\Reals\) if:
|
|
|
|
\begin{enumerate}
|
|
\def\labelenumi{\arabic{enumi}.}
|
|
\tightlist
|
|
\item
|
|
\[f(x) \ge 0, \forall x \in \Reals\]
|
|
\item
|
|
\[\int\limits_{-\infty}^{\infty} f(x) dx = 1\]
|
|
\item
|
|
\[P(x_0 \le X \le x_1) = P(x_0 < X < x_1)\] \[= P(x_0 \le X < x_1)\]
|
|
\[= P(x_0 < X \le x_1)\]
|
|
\end{enumerate}
|
|
|
|
\hypertarget{example-1}{%
|
|
\subsubsection{Example}\label{example-1}}
|
|
|
|
Suppose that the error in the reaction temperature in
|
|
\(^\circ \text{C}\) for a controlled lab experiment is a continuous
|
|
random variable, \(X\), having PDF: \[f(x) =
|
|
\begin{cases}
|
|
{x^2 \over 3} & -1 < x < 2 \\
|
|
0 & elsewhere
|
|
\end{cases}\]
|
|
|
|
\hypertarget{a-1}{%
|
|
\paragraph{a)}\label{a-1}}
|
|
|
|
Verify that \(f(x)\) is a PDF.
|
|
\[\int\limits_{-1}^{2} {x^2 \over 3} dx \stackrel{?}{=} 1\]
|
|
\[{1 \over 3} \left[{1 \over 3} x^3 \Big\vert_{-1}^{2}\right] = {1\over9}[8- (-1)] = 1\]
|
|
|
|
\hypertarget{b-1}{%
|
|
\paragraph{b)}\label{b-1}}
|
|
|
|
Find \(P(0 < X < 0.5)\):
|
|
\[P(0 < X < 0.5) = \int\limits_0^{0.5} {x^2 \over 3}dx\]
|
|
\[{1\over9}\left[x^3 \Big|_0^{0.5}\right] = {1\over9}[0.125] = 0.01389\]
|
|
|
|
\hypertarget{definition-1}{%
|
|
\subsubsection{Definition}\label{definition-1}}
|
|
|
|
The CDF, \(F(x)\) of a continuous random variabl, \(X\), with
|
|
probability density function \(f(x)\) is:
|
|
\[F(x) = P(X \le x) = \int\limits_{-\infty}^x f(t) dt\]
|
|
|
|
\textbf{Note:}
|
|
|
|
\begin{enumerate}
|
|
\def\labelenumi{\arabic{enumi}.}
|
|
\tightlist
|
|
\item
|
|
\[P(a < X < b) = F(b) - F(a)\]
|
|
\item
|
|
\[f(x) = {d\over dx}F(x)\]
|
|
\end{enumerate}
|
|
|
|
\hypertarget{example-2}{%
|
|
\subsubsection{Example}\label{example-2}}
|
|
|
|
Find the CDF of the previous example \[f(x) =
|
|
\begin{cases}
|
|
{x^2 \over 3} & -1 < x < 2 \\
|
|
0 & elsewhere
|
|
\end{cases}\]
|
|
|
|
\[F(x) = \int\limits_{-1}^x {t^2 \over 3} dt\]
|
|
\[{1/over 9}\left[t^3\Big|_{-1}^x\right] = {1\over 9}\left[x^3 + 1\right]\]
|
|
\[F(x) = \begin{cases}
|
|
0 & t < -1 \\
|
|
{1\over 9} \left[x^3 + 1\right] & -1 \le x \le 2 \\
|
|
1 & elsewhere
|
|
\end{cases}\]
|
|
|
|
\hypertarget{example-3}{%
|
|
\subsubsection{Example}\label{example-3}}
|
|
|
|
The proportion of the budget for a certain type of industrial copany
|
|
that is allotted to environmential and pollution control is coming under
|
|
scrutiny. A data collection project determines that the distribution of
|
|
these proportions is given by: \[f(y) = \begin{cases}
|
|
k(1-y)^4 & 0 \le y \le 1 \\
|
|
0 & elsewhere
|
|
\end{cases}\]
|
|
|
|
Find \(k\) that renders \$f(y) a valid density function:
|
|
\[\int\limits_0^1 k(1-y)^4dy = 1\] \[{k\over5} = 1\]
|
|
\[\therefore k = 5\]
|