Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/statistical_based/logmmse.m
2024-04-25 18:38:09 -04:00

120 lines
2.8 KiB
Matlab

function logmmse(filename,outfile)
%
% Implements the logMMSE algorithm [1].
%
% Usage: logmmse(noisyFile, outputFile)
%
% infile - noisy speech file in .wav format
% outputFile - enhanced output file in .wav format
%
%
% Example call: logmmse('sp04_babble_sn10.wav','out_log.wav');
%
% References:
% [1] Ephraim, Y. and Malah, D. (1985). Speech enhancement using a minimum
% mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust.,
% Speech, Signal Process., ASSP-23(2), 443-445.
%
% Authors: Philipos C. Loizou
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin<2
fprintf('Usage: logmmse(noisyfile.wav,outFile.wav) \n\n');
return;
end
[x, Srate, bits]= wavread( filename); %nsdata is a column vector
% =============== Initialize variables ===============
len=floor(20*Srate/1000); % Frame size in samples
if rem(len,2)==1, len=len+1; end;
PERC=50; % window overlap in percent of frame size
len1=floor(len*PERC/100);
len2=len-len1;
win=hamming(len); % define window
% Noise magnitude calculations - assuming that the first 6 frames is
% noise/silence
nFFT=2*len;
noise_mean=zeros(nFFT,1);
j=1;
for m=1:6
noise_mean=noise_mean+abs(fft(win.*x(j:j+len-1),nFFT));
j=j+len;
end
noise_mu=noise_mean/6;
noise_mu2=noise_mu.^2;
%--- allocate memory and initialize various variables
x_old=zeros(len1,1);
Nframes=floor(length(x)/len2)-floor(len/len2);
xfinal=zeros(Nframes*len2,1);
%=============================== Start Processing =======================================================
%
k=1;
aa=0.98;
mu=0.98;
eta=0.15;
ksi_min=10^(-25/10);
for n=1:Nframes
insign=win.*x(k:k+len-1);
spec=fft(insign,nFFT);
sig=abs(spec); % compute the magnitude
sig2=sig.^2;
gammak=min(sig2./noise_mu2,40); % limit post SNR to avoid overflows
if n==1
ksi=aa+(1-aa)*max(gammak-1,0);
else
ksi=aa*Xk_prev./noise_mu2 + (1-aa)*max(gammak-1,0); % a priori SNR
ksi=max(ksi_min,ksi); % limit ksi to -25 dB
end
log_sigma_k= gammak.* ksi./ (1+ ksi)- log(1+ ksi);
vad_decision= sum(log_sigma_k)/ len;
if (vad_decision< eta)
% noise only frame found
noise_mu2= mu* noise_mu2+ (1- mu)* sig2;
end
% ===end of vad===
A=ksi./(1+ksi); % Log-MMSE estimator
vk=A.*gammak;
ei_vk=0.5*expint(vk);
hw=A.*exp(ei_vk);
sig=sig.*hw;
Xk_prev=sig.^2;
xi_w= ifft( hw .* spec,nFFT);
xi_w= real( xi_w);
xfinal(k:k+ len2-1)= x_old+ xi_w(1:len1);
x_old= xi_w(len1+ 1: len);
k=k+len2;
end
wavwrite(xfinal,Srate,16,outfile);