Rowan-Classes/6th-Semester-Spring-2024/DSP/Labs/FinalProject/statistical_based/stsa_mis.m
2024-04-25 18:38:09 -04:00

154 lines
3.6 KiB
Matlab

function stsa_mis(filename,outfile)
%
% Implements the Bayesian estimator based on the modified Itakura-Saito
% distortion measure [1, Eq. 43].
%
% Usage: stsa_mis(noisyFile, outputFile)
%
% infile - noisy speech file in .wav format
% outputFile - enhanced output file in .wav format
%
%
% Example call: stsa_mis('sp04_babble_sn10.wav','out_mis.wav');
%
% References:
% [1] Loizou, P. (2005). Speech enhancement based on perceptually motivated
% Bayesian estimators of the speech magnitude spectrum. IEEE Trans. on Speech
% and Audio Processing, 13(5), 857-869.
%
% Author: Philipos C. Loizou
%
% Copyright (c) 2006 by Philipos C. Loizou
% $Revision: 0.0 $ $Date: 10/09/2006 $
%-------------------------------------------------------------------------
if nargin<2
fprintf('Usage: stsa_mis inFile outFile.wav \n\n');
return;
end
[x, Srate, bits]= wavread( filename);
% =============== Initialize variables ===============
%
len=floor(20*Srate/1000); % Frame size in samples
if rem(len,2)==1, len=len+1; end;
PERC=50; % window overlap in percent of frame size
len1=floor(len*PERC/100);
len2=len-len1;
win=hanning(len); %tukey(len,PERC); % define window
% Noise magnitude calculations - assuming that the first 6 frames is noise/silence
%
nFFT=len;
nFFT2=len/2;
noise_mean=zeros(nFFT,1);
j=1;
for k=1:5
noise_mean=noise_mean+abs(fft(win.*x(j:j+len-1),nFFT));
j=j+len;
end
noise_mu=noise_mean/5;
noise_mu2=noise_mu.^2;
%--- allocate memory and initialize various variables
img=sqrt(-1);
x_old=zeros(len1,1);
Nframes=floor(length(x)/len2)-1;
xfinal=zeros(Nframes*len2,1);
%=============================== Start Processing =======================================================
%
k=1;
aa=0.98;
fprintf('\nThis might take some time ...\n');
for n=1:Nframes
insign=win.*x(k:k+len-1);
%--- Take fourier transform of frame ----
spec=fft(insign,nFFT);
sig=abs(spec); % compute the magnitude
sig2=sig.^2;
gammak=min(sig2./noise_mu2,40); % post SNR. Limit it to avoid overflows
if n==1
ksi=aa+(1-aa)*max(gammak-1,0);
else
ksi=aa*Xk_prev./noise_mu2 + (1-aa)*max(gammak-1,0); % a priori SNR
end
vk=ksi.*gammak./(1+ksi);
sig_hat=log(comp_int(vk,gammak,sig)); % Eq. 41
Xk_prev=sig_hat.^2;
xi_w= ifft( sig_hat.* exp(img*angle(spec)));
xi_w= real( xi_w);
% --- Overlap and add ---------------
%
xfinal(k:k+ len2-1)= x_old+ xi_w(1:len1);
x_old= xi_w(len1+ 1: len);
if rem(n,20)==0, fprintf('Frame: %d Percent completed:%4.2f\n',n,n*100/Nframes); end;
k=k+len2;
end
%========================================================================================
wavwrite(xfinal,Srate,16,outfile);
%------------------------------E N D -----------------------------------
function xhat=comp_int(vk,gammak,Yk)
% -- Evaluates Eq. 43 in [1]
%
Yk2=Yk.*Yk;
G2=gammak.^2;
EV=exp(-vk);
N=40; % number of terms to keep in infinite sum (Eq. 43)
L=length(vk)/2+1;
J1=zeros(L,1);
J2=zeros(L,1);
for j=1:L
sum=0; sum_b=0;
for m=0:N
F=factorial(m);
d1=(vk(j))^m;
d2=hyperg(-m,-m,0.5,Yk2(j)/(4*G2(j)),10);
d2_b=hyperg(-m,-m,1.5,Yk2(j)/(4*G2(j)),10);
sum=sum+d1*d2/F;
sum_b=sum_b+gamma(m+1.5)*d1*d2_b/(F*gamma(m+1));
end
J1(j)=sum;
J2(j)=sum_b;
end
J1=J1.*EV(1:L);
J2=J2.*EV(1:L).*sqrt(vk(1:L)).*Yk(1:L)./gammak(1:L);
xhat2=max(real(J1+J2),0.00001);
xhat = [xhat2; flipud(xhat2(2:L-1))];