609 lines
22 KiB
TeX
609 lines
22 KiB
TeX
\hypertarget{vector-analysis}{%
|
|
\subsection{1.1 Vector Analysis}\label{vector-analysis}}
|
|
|
|
\hypertarget{scalar}{%
|
|
\paragraph{Scalar}\label{scalar}}
|
|
|
|
A measure described by one real number. Examples include temperature,
|
|
size, and mass. A scalar is a \(1 \times 1\) matrix.
|
|
|
|
\hypertarget{vector}{%
|
|
\paragraph{Vector}\label{vector}}
|
|
|
|
A measure described by more than one real number (direction and
|
|
magnitude). Examples include force, velocity, and it's derivatives.
|
|
Vectors are often described by \(n \times 1\) or \(1 \times n\)
|
|
matricies.
|
|
|
|
\hypertarget{unit-vector}{%
|
|
\paragraph{Unit Vector}\label{unit-vector}}
|
|
|
|
A unit (direction or normalized) vector is signified with a \(\hat{ }\)
|
|
symbol. Common unit vectors include \(\hat{x}\), \(\hat{y}\), and
|
|
\(\hat{z}\). The normalized version of any vector is defined as:
|
|
\[\hat{a} = \frac{\vec{A}}{\lVert\vec{A}\rVert}\]
|
|
|
|
\hypertarget{dot-product}{%
|
|
\paragraph{Dot Product}\label{dot-product}}
|
|
|
|
The dot product is a measure of how \emph{parallel} two vectors are,
|
|
scaled by the magnitudes of the two vectors. To compute it, find the sum
|
|
of the products of the like components of two vectors. It is also
|
|
defined as the product of the magnitudes of the vectors normalized by
|
|
the cosine of the angle between them. It is defined as:
|
|
\[W = \vec{F} \cdot \vec{r} = \lVert\vec{F}\rVert\lVert\vec{r}\rVert \cos{\alpha}\]
|
|
|
|
\hypertarget{cross-product}{%
|
|
\paragraph{Cross Product}\label{cross-product}}
|
|
|
|
The cross product is a measure of how \emph{perpendicular} two vectors
|
|
are. This operation yeilds a vector quantity \emph{orthoganal} to both
|
|
original vectors. The direction vector for the cross product is
|
|
\(\hat{a}_c\), and its magnitude is the product of the magnitudes and
|
|
the sine of the angle between them. It is defined as:
|
|
\[\vec{C} = \vec{A} \times \vec{B} = \lVert\vec{A}\rVert \lVert\vec{B}\rVert \sin(\alpha) \hat{a}_c = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}\]
|
|
|
|
\hypertarget{right-hand-rule}{%
|
|
\paragraph{Right Hand Rule}\label{right-hand-rule}}
|
|
|
|
The right hand rule is a quick way to find \(\hat{a}_c\).
|
|
\[\overrightarrow{thumb} = \overrightarrow{pointer} \times \overrightarrow{middle}\]
|
|
|
|
\hypertarget{cartesian-to-cylindrical}{%
|
|
\paragraph{Cartesian to Cylindrical}\label{cartesian-to-cylindrical}}
|
|
|
|
\[\vec{A} = 4\hat{x} + 4\hat{y} - 2\hat{z}\] \[r = \sqrt{x^2 + y^2}\]
|
|
\[\varphi = \arctan\left(\frac{y}{x}\right)\] \[z = z\]
|
|
\[\vec{A} = A_\rho \hat{\rho} + A_\varphi \hat{\varphi} + A_z \hat{z}\]
|
|
\[A_\rho = A_x \cos(\varphi) + A_y\sin(\varphi) = 4\sqrt{2}\]
|
|
\[A_\varphi = -A_x\sin(\varphi) + A_y\cos(\varphi) = 0\]
|
|
\[A_z = A_z = -2\]
|
|
|
|
\hypertarget{vector-calculus}{%
|
|
\subsection{1.2 Vector Calculus}\label{vector-calculus}}
|
|
|
|
The differential along some path, \(d\vec{l}\), is defined as:
|
|
\[d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z} = d\vec{x} + d\vec{y} + d\vec{z}\]
|
|
|
|
\hypertarget{the-del-leftnablaright-operator}{%
|
|
\paragraph{\texorpdfstring{The ``Del'' \(\left(\nabla\right)\)
|
|
operator}{The ``Del'' \textbackslash left(\textbackslash nabla\textbackslash right) operator}}\label{the-del-leftnablaright-operator}}
|
|
|
|
The gradient of the scalar field \(\left(\nabla f\right)\).
|
|
\[\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}\]
|
|
\[df = \nabla f \cdot d\vec{l} = \left(\frac{\partial f}{\partial x}\right)dx + \left(\frac{\partial f}{\partial y}\right)dy + \left(\frac{\partial f}{\partial z}\right)dz\]
|
|
|
|
\hypertarget{directional-derivative}{%
|
|
\subsubsection{Directional Derivative:}\label{directional-derivative}}
|
|
|
|
The \emph{directional derivative} is used to find the change of a
|
|
function along some infinatesimal direction and is defined as:
|
|
\[\Delta \varphi = {\nabla}_l \varphi \cdot \Delta \vec{l}\]
|
|
\[\therefore {\nabla}_l \varphi = \frac{\Delta \varphi}{\delta \vec{l}} = \frac{d \varphi}{d \vec{l}} = \nabla \varphi \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}\]
|
|
|
|
\hypertarget{example-1.1}{%
|
|
\paragraph{Example 1.1}\label{example-1.1}}
|
|
|
|
A function, \(f(x,y,z) = x^2 y^2 + xyz\). Find \(\nabla f\).
|
|
\[f(x,y,z) = f(r)\] \[r = \sqrt{x^2 + y^2 + z^2}\]
|
|
\[\nabla f = (2xy^2)\hat{x} + (2x^2y + xz)\hat{y} + xy\hat{z}\]
|
|
|
|
\hypertarget{example-1.2}{%
|
|
\paragraph{Example 1.2}\label{example-1.2}}
|
|
|
|
Consider a function, \(w = x^2y^2 + xyz\). Find \(\nabla_l w\) at
|
|
\((2, -1, 0)\) in the direction,
|
|
\(\vec{l} = 3\hat{x} + 4\hat{y} + 12\hat{z}\).
|
|
\[\lVert\vec{l}\rVert = \sqrt{3^2 + 4^2 + 12^2} = 13\]
|
|
\[{\nabla}_l w = \nabla w \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}\]
|
|
Solving at \((2, -1, 0)\):
|
|
\[\nabla w = 2(2)(-1)^2\hat{x} + 2(2)^2(-1)\hat{y} + 2(-1)\hat{z} = 4\hat{x} - 8\hat{y} - 2\hat{z}\]
|
|
\[{\nabla}_l w= (4\hat{x} - 8\hat{y} - 2\hat{z}) \cdot \left(\frac{3}{13}\hat{x} + \frac{4}{13}\hat{y} + \frac{12}{13}\hat{z}\right) = \frac{-44}{13}\]
|
|
|
|
\hypertarget{divergence-and-curl}{%
|
|
\subsubsection{Divergence and Curl}\label{divergence-and-curl}}
|
|
|
|
\hypertarget{divergence-of-a-vector-field}{%
|
|
\paragraph{Divergence of a Vector
|
|
Field}\label{divergence-of-a-vector-field}}
|
|
|
|
The divergence of a vector field is a measure of outward flux. It is
|
|
defined as:
|
|
\[\nabla \cdot f = \left( \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) \cdot (f_x + f_y + f_z) = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}\]
|
|
|
|
If \(\nabla \cdot \vec{A} = 0\), there is no divergence.
|
|
|
|
\hypertarget{curl-of-a-vector-field}{%
|
|
\paragraph{Curl of a Vector Field}\label{curl-of-a-vector-field}}
|
|
|
|
The curl of a vector field is a measure of circulation in each
|
|
infinatesimally small region of the field. It is defined as:
|
|
\[\nabla \times f = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \\ \end{vmatrix} = \left< \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial z} - \frac{\partial f_x}{\partial z} \right>\]
|
|
|
|
\hypertarget{solenoidal-field}{%
|
|
\paragraph{Solenoidal Field}\label{solenoidal-field}}
|
|
|
|
A solenoidal field is a vector field without divergence, defined as:
|
|
\[\nabla \cdot \vec{f} = 0\]
|
|
|
|
\hypertarget{conservative-rotational-field}{%
|
|
\paragraph{Conservative / Rotational
|
|
Field}\label{conservative-rotational-field}}
|
|
|
|
A conservative field is a vector field without curl, defined as:
|
|
\[\nabla \times \vec{f} = 0\]
|
|
|
|
\hypertarget{example-1.3}{%
|
|
\paragraph{Example 1.3}\label{example-1.3}}
|
|
|
|
Consider the vector field, \(\vec{F} = k \hat{x}\), where both the
|
|
direction and magnitude are uniform in all space.
|
|
\[\nabla \cdot \vec{F} = 0\] \[\nabla \times \vec{F} = 0\]
|
|
|
|
\hypertarget{example-1.4}{%
|
|
\paragraph{Example 1.4}\label{example-1.4}}
|
|
|
|
Consider the vector field, \(\vec{F} = k \hat{r}\), where magnitude is
|
|
constant and direction is away from a central point.
|
|
\[\hat{r} = \sqrt{\hat{x}^2 + \hat{y}^2 + \hat{z}^2}\]
|
|
\[\nabla \cdot \vec{F} = \sqrt{3} k\] \[\nabla \times \vec{F} = 0\]
|
|
|
|
\hypertarget{example-1.5}{%
|
|
\paragraph{Example 1.5}\label{example-1.5}}
|
|
|
|
Consider the vector field, \(\vec{F} = k \times \hat{r}\), where
|
|
magnitude is uniform and the direction is perpendicular to the distance
|
|
from a central point for all space. \[\nabla \cdot \vec{F} = 0\]
|
|
\[\nabla \times \vec{F} = 2k\]
|
|
|
|
\hypertarget{curl-and-divergence-identities}{%
|
|
\subsubsection{Curl and Divergence
|
|
Identities}\label{curl-and-divergence-identities}}
|
|
|
|
\begin{enumerate}
|
|
\def\labelenumi{\arabic{enumi}.}
|
|
\tightlist
|
|
\item
|
|
The Laplacian: can operate on a scalar or vector field
|
|
\[\nabla \cdot (\nabla f) = \nabla^2 f\]
|
|
\[\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}\]
|
|
\item
|
|
The curl of a gradient is \(0\) \[\nabla \times (\nabla f) = 0\]
|
|
\item
|
|
The gradient of divergence is a scalar
|
|
\[\nabla (\nabla \cdot \vec{f})\]
|
|
\item
|
|
The divergence of curl is \(0\)
|
|
\[\nabla \cdot (\nabla \times \vec{v}) = 0\]
|
|
\item
|
|
Curl of curl
|
|
\[\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}\]
|
|
\end{enumerate}
|
|
|
|
\hypertarget{the-line-integral}{%
|
|
\subsubsection{The Line Integral}\label{the-line-integral}}
|
|
|
|
The line integral is the integral of the tangential component of a
|
|
vector field along a path.
|
|
|
|
The line integral is defined as:
|
|
\[\int \vec{A} \cdot d\vec{l} = \int \lVert \vec{A} \rVert \cos(\alpha) \lVert d\vec{l} \rVert\]
|
|
|
|
Where:
|
|
|
|
\begin{itemize}
|
|
\item
|
|
\(\vec{A}\) is some vector field
|
|
\item
|
|
\(d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z}\)
|
|
\end{itemize}
|
|
|
|
If the path of the integral is a closed curve, it is said to be the
|
|
circulation of \(\vec{A}\) around \(\vec{l}\), defined as:
|
|
|
|
\[\oint_c \vec{A} \cdot d\vec{l}\]
|
|
|
|
\hypertarget{example-1.6}{%
|
|
\paragraph{Example 1.6}\label{example-1.6}}
|
|
|
|
Calculate the circulation of \(\vec{F}\) around the path.
|
|
|
|
\(\vec{F} = x^2 \hat{x} - xy\hat{y} - y^2\hat{z}\)
|
|
|
|
Circulation of \(\vec{F}\) around the path:
|
|
\[\oint \vec{F} \cdot d \vec{l} = \int_1 + \int_2 + \int_3 + \int_4\]
|
|
|
|
\hypertarget{path-1}{%
|
|
\subparagraph{Path 1}\label{path-1}}
|
|
|
|
Straight line from \((1,0,0)\) to \((0,0,0)\)
|
|
|
|
\(x\) varies, \(z=0\), \(y=0\).
|
|
|
|
Plug into \(\vec{F}\):
|
|
\[\vec{F}_1 = x^2\hat{x} - x(0)\hat{y} - (0)^2\hat{z} = x^2\hat{x}\]
|
|
|
|
Since \(x\) varies at some rate, \(dx\) exists, and since \(y\) and
|
|
\(z\) are constant, \(dy\) and \(dz\) are both \(0\).
|
|
|
|
Plug into \(d\vec{l}\):
|
|
\[d\vec{l} = dx\hat{x} + (0)\hat{y} + (0)\hat{z} = dx\hat{x}\]
|
|
\[\int \vec{F}_1 \cdot d\vec{l}_1 = \int x^2\hat{x} \cdot dx\hat{x} = \int x^2dx\]
|
|
|
|
For this specific path:
|
|
\[\int_{1}^{0} x^2dx = \left. \frac{x^3}{3} \right\vert_1^0 = 0 - \frac{1}{3} = -\frac{1}{3}\]
|
|
|
|
\hypertarget{path-2}{%
|
|
\subparagraph{Path 2}\label{path-2}}
|
|
|
|
Straight line from \((0,0,0)\) to \((0,1,0)\)
|
|
|
|
\(y\) varies, \(x=0\), \(z=0\)
|
|
|
|
Plug into \(\vec{F}\):
|
|
\[\vec{F}_2 = (0)^2\hat{x} - (0)y\hat{y} - y^2\hat{z} = -y^2\hat{z}\]
|
|
|
|
Since \(y\) varies at some rate, \(dy\) exists, but since \(x\) and
|
|
\(z\) are constant, \(dx\) and \(dz\) are both \(0\).
|
|
|
|
Plug into \(d\vec{l}\):
|
|
\[d\vec{l}_2 = (0)\hat{x} + dy\hat{y} + (0)\hat{z} = dy\hat{y}\]
|
|
\[\int \vec{F}_2 \cdot d\vec{l} = \int -y^2\hat{z} \cdot dy\hat{y} = \int\limits_0^1 0 = 0\]
|
|
|
|
\hypertarget{path-3}{%
|
|
\subparagraph{Path 3}\label{path-3}}
|
|
|
|
Straight line from \((0,1,0)\) to \((1,1,1)\)
|
|
|
|
\(x\) and \(z\) vary at the same rate and always have the same value,
|
|
\(y=1\)
|
|
|
|
\hypertarget{surface-integrals}{%
|
|
\subsubsection{Surface Integrals}\label{surface-integrals}}
|
|
|
|
\(\hat{n}\) is the unit normal vector of a surface.
|
|
|
|
The total \emph{flux} crossing an area, \(\Delta s\), is given by the
|
|
function:
|
|
\[\Delta s \left[ \lVert \vec{F} \rVert \cos(\alpha)\right] = \vec{F} \cdot \hat{n} \Delta s\]
|
|
|
|
Total flux is defined as:
|
|
\[\sum_{i=1}^N \vec{F}_i \cos(\alpha_i) \Delta s_i = \int_s \vec{F} \cdot d\vec{s}\]
|
|
|
|
\hypertarget{gradient-theorem}{%
|
|
\paragraph{Gradient Theorem}\label{gradient-theorem}}
|
|
|
|
The line integral through a gradient field is the difference of the
|
|
values a the end points.
|
|
|
|
\[\int\limits_{r_1}^{r_2} \nabla \varphi \cdot d\vec{l} = \varphi(r_2) - \varphi(r_1)\]
|
|
|
|
\[\oint \nabla \varphi \cdot d\vec{l} = 0\]
|
|
|
|
\hypertarget{divergence-theorem}{%
|
|
\paragraph{Divergence Theorem}\label{divergence-theorem}}
|
|
|
|
The divergence in some volume is the same as the flux through its
|
|
surface.
|
|
|
|
\[\iiint_{vol} \nabla \cdot \vec{A} d\tau = \oiint \vec{A} \cdot d\vec{s}\]
|
|
|
|
\hypertarget{stokes-theorem}{%
|
|
\paragraph{Stokes Theorem}\label{stokes-theorem}}
|
|
|
|
The curl in some region is the same as the circulation of the region's
|
|
border.
|
|
\[\iint_A (\nabla \times \vec{A}) \cdot d\vec{s} = \oint \vec{A} \cdot d\vec{l}\]
|
|
|
|
\hypertarget{coulombs-law}{%
|
|
\subsection{1.3 Coulomb's Law}\label{coulombs-law}}
|
|
|
|
Initial observation: \[\vec{F} \propto q_1 q_2\]
|
|
|
|
Vacuum Permittivity: \[\varepsilon_0 = 8.854 \times 10^{-12}\]
|
|
|
|
Coulomb's Constant:
|
|
\[k = \frac{1}{4 \pi \varepsilon_0} = 9 \times 10^{-9}\]
|
|
|
|
Coulomb's Law: \[\vec{F} = k \frac{q_1 q_2}{r^2} \hat{a}_{1 2}\]
|
|
|
|
Superposition of Coulomb's Law:
|
|
\[\vec{F}_{Net} = \sum_{i=1}^{N} k_i \frac{Q q_i}{r_i^2} \hat{r}\]
|
|
|
|
\textbf{Note}: \(k_i\) depends on material properties. When in a vacuum,
|
|
\(k_i = k\).
|
|
|
|
\hypertarget{example-1.7}{%
|
|
\paragraph{Example 1.7}\label{example-1.7}}
|
|
|
|
Two point charges, \(q_1\) and \(q_2\) are spaced 2cm apart on the
|
|
x-axis. A third charge, \(q_3\) is placed between the first two with a
|
|
distance \(x_1\) between it and \(q_1\) and \(x_2\) between it and
|
|
\(q_2\) such that \(q_3\) is in static equilibrium.
|
|
|
|
Known: \[\vec{F}_{1 3} + \vec{F}_{2 3} = 0\] By Coulomb's Law:
|
|
\[\vec{F}_{1 3} = \frac{k_1 q_3 q_1}{r_{1 3}^2} \hat{z}\]
|
|
\[\vec{F}_{2 3} = -\frac{k_2 q_3 q_2}{r_{1 3}^2} \hat{z}\]
|
|
\[\therefore \vec{F}_{1 3} + \vec{F}_{2 3} = k q_3 \left( \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} \right)\hat{z} = 0\]
|
|
\[\therefore \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} = 0\]
|
|
|
|
Solve for \(r_{1 3}\): \[r_{1 3} = \pm r_{2 3}\sqrt{\frac{q_1}{q_2}}\]
|
|
|
|
Known: \[r_{1 3} + r_{2 3} = 2\] \[\therefore r_{2 3} = 2 - r_{1 3}\]
|
|
|
|
Plug into first equation:
|
|
\[r_{1 3} = \pm (2 - r_{1 3}) \sqrt{\frac{q_1}{q_2}}\]
|
|
|
|
Expand:
|
|
\[r_{1 3} = \pm \left(2 \sqrt{\frac{q_1}{q_2}} - r_{1 3}\sqrt{\frac{q_1}{q_2}} \right)\]
|
|
\[\therefore r_{1 3} \left(1 \pm \sqrt{\frac{q_1}{q_2}} \right) = \pm 2\sqrt{\frac{q_1}{q_2}}\]
|
|
\[\therefore r_{1 3} = \pm 2\sqrt{\frac{q_1}{q_2}} \left( 1 \pm \sqrt{\frac{q_1}{q_2}} \right)^{-1}\]
|
|
|
|
\hypertarget{electric-field-intensity}{%
|
|
\subsubsection{Electric Field
|
|
Intensity}\label{electric-field-intensity}}
|
|
|
|
Call a test charge at the point of measurement \(Q_2\).
|
|
|
|
Coulomb's Law:
|
|
\[\vec{F}_{1 2} = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^2} \hat{a}_{1 2}\]
|
|
|
|
The electric field intensisty:
|
|
\[\vec{E}_{1 2} = \frac{\vec{F}_{1 2}}{Q_1}\]
|
|
\[\vec{E} = \frac{Q_1}{4 \pi \varepsilon_0 r^2} \hat{a}_{1 2}\]
|
|
\[\vec{E}_{NET} = \sum_{i=0}^{N} \frac{k_i Q_i}{R_i^2} \hat{a}_{R_i}\]
|
|
|
|
Force due to electric field: \[\vec{F} = q \vec{E}\]
|
|
|
|
\hypertarget{electric-field}{%
|
|
\paragraph{Electric field}\label{electric-field}}
|
|
|
|
Always in the same direction as the electric field force.
|
|
|
|
\hypertarget{electric-field-of-a-dipole}{%
|
|
\paragraph{Electric field of a
|
|
dipole}\label{electric-field-of-a-dipole}}
|
|
|
|
At a point equidistant to each pole:
|
|
\[\lVert \vec{r}_1 \rVert = \lVert \vec{r_2} \rVert = r\]
|
|
|
|
By Coulomb's Law: \[\vec{E}_1 = \frac{kq}{r^2} \hat{r}_1\]
|
|
\[\vec{E}_2 = \frac{kq}{r^2} \hat{r}_2\]
|
|
\[\therefore \lVert \vec{E}_1 \rVert = \lVert \vec{E}_2 \rVert\]
|
|
|
|
In terms of the component distances: \[r^2 = a^2 + y^2\]
|
|
\[\therefore E = \frac{kq}{a^2 + y^2}\]
|
|
|
|
\[\vec{E}_{NET_y} = \vec{E}_{1_y} + \vec{E}_{2_y} = 2E\cos{\theta}\]
|
|
|
|
By definition: \[\cos(\theta) = \frac{a}{r}\]
|
|
\[\therefore \vec{E}_{NET_y} = \frac{2kq}{a^2 + y^2} \frac{a}{\sqrt{a^2 + y^2}}\hat{y}\]
|
|
\[\vec{E}_{NET_y} = 2 \frac{kqa}{(x^2 + y^2)^{3/2}} \hat{y}\]
|
|
|
|
If \(y \gg a\) (far field): \[\vec{E}_{NET} = 2 \frac{kqa}{y^3}\]
|
|
|
|
\textbf{Takeaway}: \[\vec{E}_{monopole} \propto \frac{1}{r^2}\]
|
|
\[\vec{E}_{dipole} \propto \frac{1}{r^3}\]
|
|
|
|
\hypertarget{charge-densities}{%
|
|
\paragraph{Charge Densities}\label{charge-densities}}
|
|
|
|
\(\lambda\) - Linear charge density
|
|
|
|
\(\sigma\) - Surface charge density
|
|
|
|
\(\rho\) - Volume charge density
|
|
|
|
Electric flux density: \[\vec{D} = \varepsilon_0 \vec{E}\]
|
|
|
|
Where:
|
|
\[\vec{E} = \lim_{\Delta q \to 0} \frac{k \sum_i \Delta q_i}{\lVert \vec{r}_i \rVert ^2} \hat{r}_i = \int \frac{k}{\lVert \vec{r}_i \rVert ^2} dq\]
|
|
|
|
\hypertarget{example-1.8}{%
|
|
\paragraph{Example 1.8}\label{example-1.8}}
|
|
|
|
A straight line segment of length \(L\) with uniform charge density
|
|
\(\lambda\) extends from the origin in the \(\hat{x}\) direction. Find
|
|
the strength of the electric field, \(\vec{E}\) at some arbitrary point,
|
|
\(p\) along the ray from the origin in the \(\hat{z}\) direction.
|
|
|
|
The distance along the line segment in the \(\hat{x}\) direction is
|
|
denoted as \(x\), and the distance from the origin to point \(p\) is
|
|
denoted as \(z\). The vector, \(\vec{r}\) has length
|
|
\(\sqrt{x^2 + z^2}\) and makes an angle \(\theta\) with the ray in the
|
|
\(-\hat{z}\) direction.
|
|
|
|
The contribution \(d\vec{E}\) to the total electric field, \(\vec{E}\),
|
|
at point \(p\) is defined as:
|
|
\[d\vec{E} = \frac{k dq}{\lVert \vec{r} \rVert ^2} \hat{r}\]
|
|
|
|
For a linear charge distribution: \[dq = \lambda dl\] The distance,
|
|
\(r\), to each \(x\) alond the line:
|
|
\[\lVert \vec{r} \rVert ^2 = x^2 + z^2\] The components of the
|
|
\(\vec{E}\)-field at point \(p\):
|
|
\[d\vec{E}_x = \lVert d\vec{E} \rVert \sin(\theta) \hat{x}\]
|
|
\[d\vec{E}_z = \lVert d\vec{E} \rVert \cos(\theta) \hat{z}\]
|
|
|
|
\hypertarget{gausss-law}{%
|
|
\subsection{Gauss's Law}\label{gausss-law}}
|
|
|
|
\hypertarget{e-flux-density}{%
|
|
\subsection{E-Flux Density}\label{e-flux-density}}
|
|
|
|
\hypertarget{emf}{%
|
|
\subsection{EMF}\label{emf}}
|
|
|
|
Measured in \emph{volts}, electromotive force (EMF), is denoted by
|
|
\(\mathcal{E}\). The value for EMF is defined as:
|
|
\[\mathcal{E} = \oint \vec{E} \cdot d \vec{l} = -\frac{d}{dt} \int_s B_z(t) \cdot ds = -\frac{d}{dt}\psi_m\]
|
|
|
|
Where:
|
|
|
|
\[\psi_m = \int_s \vec{B} \cdot d\vec{s}\]
|
|
|
|
A perfectly conducting ring with radius, \(\rho_0\), centered on the
|
|
origin in the x-y plane.
|
|
|
|
The charge distribution: \[\rho = \rho_0 + \rho_0 \sin(\omega t)\]
|
|
\[\vec{B}(t) = B_0 \cos(\omega t)\hat{z}\]
|
|
\[\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = \iint\limits_{\phi R} B_0 \cos(\omega t) dr d\phi\]
|
|
|
|
Where:
|
|
|
|
\(\varphi: [0, 2\pi]\)
|
|
|
|
\(R: [0, \rho(t)]\)
|
|
|
|
Therefore: \[\psi_m = (B_0 \cos(\omega t) \hat{z})(2\pi \rho(t))\]
|
|
|
|
\[\mathcal{E} = -\frac{d}{dt} B_0 2\pi \cos(\omega t)(\rho_0 + \rho_0\sin(\omega t))\]
|
|
|
|
\hypertarget{filling-in-some-gaps}{%
|
|
\subsubsection{Filling in some Gaps}\label{filling-in-some-gaps}}
|
|
|
|
\[\vec{F} = -\nabla \vec{u}\] Where: \(\vec{u}\) is potential.
|
|
|
|
\[\vec{E} = -\nabla \vec{v}\] Where: \(\vec{v}\) is electric potential.
|
|
|
|
\[W = \vec{F} \cdot \vec{d} = q\vec{E} \cdot \vec{d}\]
|
|
|
|
Work done by the \(\vec{E}\)-field on a charge will reduce the electric
|
|
potential:
|
|
|
|
\[-\Delta u = u_B - u_A = -\Delta W = -qEd\]
|
|
|
|
The total change is:
|
|
|
|
\[\Delta u = -q \int\limits_A^B \vec{E} \cdot d\vec{l}\]
|
|
|
|
\[\therefore \frac{\Delta u}{q} = \int\limits_A^B \vec{E} \cdot d\vec{l} = \Delta V\]
|
|
|
|
\[W = q \int \vec{E} \cdot d\vec{l}\]
|
|
|
|
\[V(r) = \frac{kq}{r}\]
|
|
|
|
For \(N\) discrete charges,
|
|
\[V = \sum\limits_{i=1}^{N} \frac{k q_i}{r_i}\]
|
|
|
|
In cartesian coordinates:
|
|
|
|
\[\vec{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{z}\]
|
|
|
|
Where:
|
|
|
|
\(F_x = \frac{dw}{dx}\)
|
|
|
|
\(F_y = \frac{dw}{dy}\)
|
|
|
|
\(F_z = \frac{dw}{dz}\)
|
|
|
|
Therefore:
|
|
\[\vec{F} = \frac{\partial w}{\partial x}\hat{i} + \frac{\partial w}{\partial y}\hat{j} + \frac{\partial w}{\partial z}\hat{k} = \nabla \vec{w}\]
|
|
|
|
\[q\vec{E} = \nabla (-\vec{u})\]
|
|
|
|
\[\vec{F} = -\nabla \vec{u}\]
|
|
|
|
\[\vec{E} = -\nabla \left( \frac{\vec{u}}{q} \right) = -\nabla \vec{V}\]
|
|
|
|
\hypertarget{electric-flux-density}{%
|
|
\paragraph{Electric Flux Density}\label{electric-flux-density}}
|
|
|
|
\[\vec{D} = \varepsilon \vec{E}\] Where
|
|
\(\varepsilon = \varepsilon_r \varepsilon_0\) (permittivity).
|
|
|
|
\hypertarget{magnetic-flux-density}{%
|
|
\paragraph{Magnetic Flux Density}\label{magnetic-flux-density}}
|
|
|
|
\[\vec{B} = \mu\vec{H}\] Where \(\mu = \mu_r \mu_0\) (permeability).
|
|
|
|
\hypertarget{amperes-law}{%
|
|
\subsubsection{Ampere's Law}\label{amperes-law}}
|
|
|
|
The total current crossing an area, \(s\), that is enclosed by the
|
|
contour \(C\): \[\oint_C \frac{\vec{B}}{\mu_0} \cdot d\vec{l}\]
|
|
|
|
The total current is the sum of the current due to charge flow and the
|
|
current due to the time rate of change of the electric flux crossing an
|
|
area, \(s\). Maxwell was able to unify electricity and magnetism by
|
|
adding the current due to the time rate of change of electric flux.
|
|
\[\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{s} + \frac{d}{dt}\int \varepsilon_0\vec{E} \cdot d\vec{s}\]
|
|
|
|
\hypertarget{simplified-amperes-law}{%
|
|
\paragraph{Simplified Ampere's Law}\label{simplified-amperes-law}}
|
|
|
|
\[\oint_C \vec{H} \cdot d\vec{l} = I = \int_s \vec{J} \cdot d\vec{s}\]
|
|
|
|
The charge density, \(J = \rho v\), has units
|
|
\(\left[ \frac{A}{m^2} \right]\).
|
|
|
|
\hypertarget{example}{%
|
|
\paragraph{Example}\label{example}}
|
|
|
|
A current, \(I\), in an infinitely long cylindrical wire with radius,
|
|
\(R\). \[\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\]
|
|
|
|
Measuring the magnetic field at some distance, \(r\), from the center of
|
|
the conductor: \[B\int dl = \mu_0 I\] Where \(\int dl\) is the
|
|
circumfrece of measurement. \[B(2\pi r) = \mu_0 I\]
|
|
\[B_{out} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}\] Inside the wire:
|
|
\[\int \vec{B} \cdot d\vec{l} = \mu_0 I\]
|
|
\[B\int dl = \frac{\mu_0 I r^2}{R^2} = 2\pi rB\]
|
|
\[B = \frac{\mu_0 I}{2\pi R^2} r\]
|
|
\[\vec{B} = \frac{\mu_0 I}{2\pi R^2}r \hat{\varphi}\]
|
|
|
|
\hypertarget{coulombs-law-1}{%
|
|
\subsubsection{Coulomb's Law}\label{coulombs-law-1}}
|
|
|
|
The total displacement flux of charge:
|
|
\[\int_s \varepsilon_0 \vec{E} \cdot d\vec{s}\]
|
|
|
|
The total current (charge with respect to time):
|
|
\[I = \frac{d}{dt} \int_s \varepsilon_0 \vec{E} \cdot d\vec{s}\]
|
|
|
|
\hypertarget{faradays-law}{%
|
|
\subsubsection{Faraday's Law}\label{faradays-law}}
|
|
|
|
Work done in moving a unit positive test charge around a closed path,
|
|
\(C\): \[\oint_C \vec{E} \cdot d\vec{l}\]
|
|
|
|
Magnetic force on a poving charge and is directed perpendicular to both
|
|
the direction of the motion of the charge and the magnetic field.
|
|
\[\oint_C \vec{B} \cdot d\vec{l}\]
|
|
|
|
\hypertarget{solenoid-ideal}{%
|
|
\subsubsection{Solenoid (Ideal)}\label{solenoid-ideal}}
|
|
|
|
For an ideal solenoid with constant current, \(I\), assume uniform
|
|
\(\vec{B}\) inside, \(\vec{B} = 0\) outside, and infinite length.
|
|
|
|
By Ampere's Law: \[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\]
|
|
|
|
For a square loop with one side in the solenoid, and it's parallel side
|
|
outside the loop:
|
|
\[\oint \vec{B} \cdot d\vec{l} = \int_1 + \int_2 + \int_3 + \int_4\]
|
|
|
|
Sides 2 and 4 are parallel, and side 3 is outside the solenoid, so:
|
|
\[\oint \vec{B} \cdot d\vec{l} = \int_1 = Bl\]
|
|
|
|
Back to Ampere's Law: \[Bl = \mu_0 I N\]
|
|
\[\therefore B = \frac{\mu_0 I N}{l} = \mu_0 I n\] Where:
|
|
|
|
\(N\) is the total number of windings,
|
|
|
|
\(l\) is the sidelength of the Amperian loop,
|
|
|
|
\(n\) is the number of windings per unit length \(\frac{N}{l}\)
|
|
|
|
\hypertarget{toroid-ideal}{%
|
|
\subsubsection{Toroid (Ideal)}\label{toroid-ideal}}
|
|
|
|
From a symmetric \(\vec{B}\)-field, lines form concentric circles inside
|
|
the toroid. For an ideal toroid, assume \(\vec{B} = 0\) outside, and
|
|
Ampere's law inside.
|
|
|
|
\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\] For some circular
|
|
Amperian loop inside the toroid: \[\vec{B} = B\hat{\varphi}\]
|
|
\[d\vec{l} = 2\pi r \vec{\varphi}\] \[B(2\pi r) = \mu_0 N I\]
|
|
\[\therefore B = \frac{\mu_0 N I}{2\pi r}\]
|