89 lines
2.9 KiB
TeX
89 lines
2.9 KiB
TeX
\documentclass[conference]{IEEEtran}
|
|
\usepackage[siunitx]{circuitikz}
|
|
\usepackage{graphicx}
|
|
%\usepackage{lipsum}
|
|
\usepackage{color}
|
|
\usepackage{enumitem}
|
|
\usepackage{epsfig}
|
|
\usepackage{mathptmx}
|
|
\usepackage{times}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{float}
|
|
\usepackage{hyperref}
|
|
%\usepackage{setspace}
|
|
%\usepackage{tikz}
|
|
\usepackage{circuitikz}
|
|
\usepackage{pgfplots}
|
|
\usepackage{textcomp}
|
|
%\usepgfplotslibrary{external}
|
|
%\tikzexternalize
|
|
%\usepackage[utf8]{inputenc}
|
|
%\usepackage[english]{babel}
|
|
%\usepackage{pgf}
|
|
\usepackage{pgfpages}
|
|
\usepackage[margin=0.4in]{geometry}
|
|
\usepackage{lmodern}
|
|
\usepackage{datetime}
|
|
\usepackage{ragged2e}
|
|
\input{border.tex}
|
|
\pgfpagesuselayout{boxed}
|
|
|
|
\hyphenation{op-tical net-works semi-conduc-tor}% correct bad hyphenation here
|
|
|
|
\font\myfont=cmr12 at 15pt
|
|
\title{\myfont VLSI Labs 1\&2 \\ Simple MOSFET \& CMOS Inverter Trends}
|
|
\author{Aidan Sharpe}
|
|
|
|
\providecommand{\keywords}[1]{\textbf{\textit{Keywords---}} #1}
|
|
\providecommand{\e}[1]{\ensuremath{\times 10^{#1}}}
|
|
\setlength{\columnsep}{7mm}
|
|
\pgfplotsset{compat=1.15}
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
\section{Introduction}
|
|
|
|
\section{Modelling a MOSFET}
|
|
|
|
\section{The Noise Margin}
|
|
The noise margin is the amount of noise that a CMOS circuit can withstand without compromising the operation of the circuit\cite{VLSI_System_Design}. This region is necessary to create a buffer that prevents small amounts of noise from switching the logic. There are two noise margins: noise margin high (NM\textsubscript{H}) and noise margin low (NM\textsubscript{L}).
|
|
|
|
The two noise margins are defined in terms of four key voltages on the voltage transfer curve (VTC) seen in figure \ref{fig:inv_vtc}: $V_\text{IL}$, $V_\text{IH}$, $V_\text{OL}$, and $V_\text{OH}$. $V_\text{IL}$ is defined as the lower input voltage where the slope of the VTC is -1, and $V_\text{IH}$ is defined as the upper input voltage meeting the same requirement. $V_\text{OL}$ is defined as the output voltage when the input voltage is equal to $V_\text{IH}$, and similarly, $V_\text{OH}$ is defined as the output voltage when the input voltage is equal to $V_\text{IL}$.
|
|
|
|
\begin{figure}[H]
|
|
\center
|
|
\includegraphics[width=0.4\textwidth]{graphics/inverter-noise-margin.png}
|
|
\caption{The VTC and its derivative for a CMOS inverter with $w_p=240$[nm] and $w_n=120$[nm]}
|
|
\label{fig:inv_vtc}.
|
|
\end{figure}
|
|
|
|
\begin{table}[H]
|
|
\center
|
|
\caption{Important VTC voltages}
|
|
\begin{tabular}{c | c}
|
|
$V_\text{IL}$ & 2.357 \\
|
|
\hline
|
|
$V_\text{IH}$ & 3.531 \\
|
|
\hline
|
|
$V_\text{OL}$ & 0.683 \\
|
|
\hline
|
|
$V_\text{OH}$ & 4.118 \\
|
|
\end{tabular}
|
|
\end{table}
|
|
|
|
With these voltages now defined, the noise margin high was calculated using
|
|
\begin{equation}
|
|
\text{NM}_\text{H} = V_\text{OH} - V_\text{IH},
|
|
\end{equation}
|
|
and noise margin low was calculated with
|
|
\begin{equation}
|
|
\text{NM}_\text{L} = V_\text{IL} - V_\text{OL}.
|
|
\end{equation}
|
|
|
|
\section{Discussion}
|
|
|
|
\section{Conclusion}
|
|
|
|
\end{document}
|