# Homework 8 - Aidan Sharpe ## 1 A transmission line is terminated with a matched 50$\Omega$ load. The transmitter puts out 100W of power, and the transmission line is 100ft long. What for what value of $\alpha$ will the power loss be 10W over the length of the line? $$\alpha = {\ln\left({P_\text{in} \over P_\text{out}}\right) \over l} = {\ln\left({100 \over 90}\right) \over 30.48[\text{m}]} = 0.00345671\left[{\text{np} \over \text{m}}\right]$$ ## 2 Evaluate the phase velocity and attenuation constant for a distorionless line, and compare it to a lossless line. $$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$ $$\gamma ^2 = (R + j\omega L)(G + j\omega C)$$ $$\gamma^2 = \omega^2 LC(j + {R \over \omega L})(j + {G \over \omega C})$$ For a distorionless line: $${R \over L} = {G \over C}$$ $$(j + {R \over \omega L}) = (j + {G \over \omega C})$$ So $\gamma^2$ becomes: $$\gamma^2 = \omega^2 L C (j + {R \over \omega L})^2$$ Solving for $\gamma$ $$\gamma = \omega\sqrt{L C}(j + {R \over \omega L})$$ Separating the real and imaginary components: $$\alpha = R \sqrt{C \over L}$$ $$\beta = j\omega\sqrt{L C}$$ For a lossless line, there is no attenuation (by definition). Therefore: $$\alpha = 0$$ To actually be able to build this lossless line, $R=0$ and $G=0$. $$\gamma^2 = (R + j\omega L)(G + j\omega C)$$ Since $R$ and $G$ are both 0: $$\gamma^2 = (j\omega L)(j \omega C)$$ $$\gamma^2 = -\omega^2 LC$$ $$\gamma = \sqrt{-\omega^2 LC} = j\omega\sqrt{LC}$$ Separating out real and imaginary: $$\alpha = 0$$ $$\beta = j\omega\sqrt{LC}$$ For lossless and distortionless lines, the attenuation constant differs, but the phase constant does not. Since the phase velocity only depends on $\omega$ and $\beta$, $v_p$ is the same for both lossless and distortionless lines. $$v_p = {\omega \over \beta} = {-j \over \sqrt{LC}}$$ ## 3 $$\hat{Z}_L = 75 + j150 \Omega$$ $$f = 2[\text{MHz}]$$ $$\omega = 2\pi f = 4\pi \times 10^6$$ $$r = 150\left[{\Omega \over \text{km}}\right]$$ $$l = 1.4\left[{\text{mH} \over \text{km}}\right]$$ $$c = 88\left[{\text{nF} \over \text{km}}\right]$$ $$g = 0.8\left[{\mu\text{s} \over \text{km}}\right]$$ $$\hat{V}_G = 100 e^{j0^\circ}$$ $$z = 100[\text{m}]$$ $$R = 15[\Omega]$$ $$L = 140[\mu\text{H}]$$ $$C = 8.8[\text{nF}]$$ $$G = 80[n\Omega]$$ ### a) Find $\hat{Z}_0$: $$Z_0 = \sqrt{R + j\omega L \over G + j\omega C} = \sqrt{15 + j(4\pi\times10^6)(140\times10^{-6}) \over 80\times10^{-9} + j(4\pi \times 10^6)(8.8\times10^{-9})}$$ $$Z_0 = 126.1324 - j0.5377$$ $$\hat{\gamma} = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$ $$\hat{\gamma} = 0.0595 + j13.9482$$ ### b) Find the input imedance $$Z_\text{in} = Z_0{Z_L + Z_0 \tanh(\gamma z) \over Z_0 + Z_L \tanh(\gamma z)}$$ $$Z_\text{in} = -126.1324 + j0.5377$$ ### c) Find the average power delivered $$\alpha = {\ln\left({P_\text{in} \over P_\text{out}}\right) \over z}$$ $$\alpha = 0.0595$$ $$P_\text{in} = {V_G^2 \over Z_\text{in}} = 79.2802 + j0.3373$$ $$P_\text{out} = P_\text{in} e^{-\alpha z} = 0.2073 + j0.0009$$ ## 4 $$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$ ### a) $$Z_L = 3 Z_0$$ $$\Gamma = 0.5$$ ### b) $$Z_L = (2 - j2)Z_0$$ $$\Gamma = 0.5385 - j0.3077$$ ### c) $$Z_L = -j2Z_0$$ $$\Gamma = 0.6 - j0.8$$ ### d) $$Z_L = 0$$ $$\Gamma = -1$$ ## 5 ### a) $$\Gamma = 0.06+j0.24$$ ### b) $$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|} = 1.657$$ ### c) $$Z_\text{in} = Z_0 {Z_L + Z_0\tanh(\gamma l) \over Z_0 + Z_L\tanh(\gamma l)} 30.50 - j1.09$$ ### d) $$Y_\text{in} = {1 \over Z_in} = 0.03274 + j0.0012$$ ### e) $$0.106\lambda$$ ### f) $$z = -0.106\lambda$$ ## 6 $$L = {3\lambda \over 8}$$ $$Z_\text{in} = -j2.5$$ $$Z_L = {-j2.5 \over 100} = -j0.025$$ At ${3\lambda \over 8}$: $$Z_L = j95$$