# Homework 3 - Aidan Sharpe ## 1 An particle with charge $-e$ has velocity $\vec{v} = -v\hat{y}$. An electric acts in the $\hat{x}$ direction. What direction must a $\vec{B}$ field act for the net force on the particle to be 0? $$\vec{F}_{net} = \vec{F}_E + \vec{F}_B = 0$$ $$\therefore \vec{F}_B = -\vec{F}_E$$ $$\vec{F}_E = q\vec{E} = (-)(\hat{x}) = -\hat{x}$$ $$\vec{F}_B = q\vec{v} \times \vec{B}$$ $$(-)\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & (-) & 0 \\ B_x & B_y & B_z \\ \end{vmatrix} \overset{!}{=} \hat{x}$$ $$-[(-B_z)\hat{x} - (0)\hat{y} + (0-(-)B_x)\hat{z})] \overset{!}{=} \hat{x}$$ $$\therefore \hat{a}_B = \hat{z}$$ ## 2 Consider a plane wave in free space with electromagnetic field intensity: $$\hat{E}e^{j\omega t} = 30\pi e^{j(10^8t + \beta z)}\hat{x}$$ $$\hat{H}e^{j\omega t} = H_m e^{j(10^8t + \beta z)}\hat{y}$$ Find the direction of propagation and the values for $H_m$, $\beta$, and the wavelength. Since $\beta z$ is added to $\omega t$, propagation is in the $-\hat{z}$ direction. $${E_x \over H_y} = \mu_0 c$$ $$E_x = 30\pi$$ $$H_y = H_m$$ $$\therefore H_m = {30\pi \over \mu_0 c}$$ $$\boxed{H_m = 0.25}$$ $$\beta = \omega \sqrt{\mu \varepsilon}$$ For free space: $$\beta = \omega \sqrt{\mu_0 \varepsilon_0}$$ $$\omega = 10^8$$ $$\boxed{\beta = 0.334}$$ $$\lambda = {c \over f}$$ $$f = {\omega \over 2\pi} = {5 \over \pi} \times 10^7$$ $$\lambda = {3 \times 10^8 \over {5 \over \pi} \times 10^7} = {30\pi \over 5}$$ $$\boxed{\lambda = 6\pi\text{[m]}}$$ ## 3 A uniform electric field has intensity: $$\vec{E} = 15\cos\left(\pi \times 10^8t +{\pi \over 3}z\right)\hat{y}$$ The $\vec{E}$ field is polarized in the $\hat{y}$ direction. The wave will propagate in the $-\hat{z}$ direction. $$f = {\pi \times 10^8 \over 2\pi} = 5 \times 10^7 \text{[s}^{-1}]$$ $$\lambda = {3 \times 10^8 \over 5 \times 10^7} = 6 \text{[m]}$$ $$H_x = {15 \over \mu_0 c} = 0.0398$$ $$\vec{H} = 0.0398\cos\left(\pi \times 10^8 t + {\pi \over 3}z\right)\hat{x}$$ ## 4 ### a) The properties of a uniform basic plane wave in free space are: Polarization, amplitude, angular frequency, and the direction of propagation. All other properties, such as wavelength, and the spatial frequency, $\beta$, can be derrived. ### b) A uniform plane wave in free space is propagating in the $\hat{z}$ direction. If the wavelength is $\lambda = 3$[cm]. $$f = {c \over \lambda} = {3 \times 10^8 \over 3 \times 10^{-2}} = 10^{10}\text{[s}^{-1}]$$ $$\beta = 2\pi f \sqrt{\mu_0 \varepsilon_0} = 209.613$$ The amplitude of the x-polarized $\vec{E}$-field is: $$\hat{E}_m = 200e^{j {\pi \over 4}}$$ Real-time $\vec{E}$-field: $$\vec{E}(z, t) = 200\cos\left(2\pi \times 10^{10}t - 209.613z + {\pi \over 4}\right)\hat{x}$$ Phasor $\vec{H}$-field: $$\hat{H} = 0.53e^{j({\pi \over 4} - 209.613z)}\hat{y}$$ Real-time $\vec{H}$-field: $$\vec{H}(z, t) = 0.53\cos\left(2\pi \times 10^{10}t - 209.613z + {\pi \over 4}\right)\hat{y}$$ ## 5 A 25[cm] by 25[cm] circuit in the y-z plane grows in the $\hat{y}$ direction by 10[m/s]. The circuit contains a 5-ohm resitor. Find the current through the circuit if it is placed in a uniform $\vec{B}$ field of $-0.5\hat{x}$[T]. By Ohms law: $$V = IR$$ $$\mathcal{E} = -{d \over dt} \int \vec{B} \cdot d\vec{s}$$ $$\mathcal{E} = -{d B A(t) \over dt}$$ $$B A(t) = -0.5 \times 0.25(0.25 + 10t) = -1.25t - 0.03125$$ $$\mathcal{E} = -{d B A(t) \over dt} = 1.25 \text{[V]}$$ $$I = {V \over R} = 250\text{[mA]}$$ Since the magnetic flux inside the loop is increasing, and the magnetic field induced by the current must counteract the magnetic field inducing the current, the current must flow counter-clockwise around the loop. ## 6 ### a) ```matlab clear all; k = 9e9; q1 = 1.0e-6; q2 = 1.0e-6; ax = 1.0; ay = 0; bx = -1.0; by = 0; [X, Y] = meshgrid(-2:0.9:2,-2:0.9:2); V = 1./sqrt((X - ax).^2 + (Y-ay).^2 ) * k * q1 + 1./sqrt((X-bx).^2 + (Y-by).^2) * k * q2; surfc(X, Y, V); [Ex, Ey] = gradient(-V, 0.2, 0.2); figure contour(X, Y, V); hold on; quiver(X, Y, Ex, Ey); ``` ![](H0306a.png) ### b) ![](H0306b.png) ### c) ```matlab % Removed the negative sign on q2 q1 = 1.0e-6; q2 = 1.0e-6; ``` ![](H0306c.png)