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Chapter 1

Control Systems: Introduction,
Applications, Definitions

Input → System → Output

To a system to a desired state, compare the current state with the objective, pass the difference to a
controller, and pass the output of the controller back to the system.

1.1 Basic Definitions & Lingo

Definition 1.1.1: System Modelling

A mathematical or input/output description of the behavior of a system.

Definition 1.1.2: Control

The use of information to affect the operation of a device, machine, or system of any kind.

Feedback is important to ensure that the objectives of the system are met.

Definition 1.1.3: Plant

The physical objective to control, impact or influence.

Definition 1.1.4: Control Objective

The desired behavior of a system.

Definition 1.1.5: Input

The signals used to control a plant.

Definition 1.1.6: Output

The measurements, data, and what is being sensed.

Definition 1.1.7: Process

The internal behavior of the plant as a result of the inputs.
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Definition 1.1.8: Model

A mathematical description of the physics of the system.

Modelling is a useful tool for the engineering of a system. It can help to determine desired inputs, outputs,
and processes.

Definition 1.1.9: Disturbances

Anything preventing the plant from achieving the desired output.

Every system will have external disturbances to deal with. The real world is never the same as the ideal
world.

Example 1.1.1 (Traffic Control)

Plant: The transportation network—movement of cars, roads, connectivity, highways, physics of the
network.
Processes: the movement of cars, switching of traffic lights
Control Objective: minimizing traffic
Input: The changing of the traffic light signals
Output: The movement of the cars
Disturbances: Accidents, snow, bad drivers

1.2 Control Strategies

Two common control strategies are the black box strategy and the model-based strategy.

Definition 1.2.1: Black Box Strategy

If the processes of a system are unknown, we can learn about the system by applying inputs and taking
note of the outputs. While analysis is not possible on black box systems, there is no need for physical
knowledge of the system.

Definition 1.2.2: Model-Based Strategy

Model-based strategies use mathematical models to describe the behavior of a system. Compared to the
black box strategy, more knowledge of the system is required, but having this knowledge makes deeper
analysis possible.

Using a model-based strategy, two control methods can be applied: the open loop method and the closed-
loop method. The open loop method has no feedback mechanism, and is therefore susceptible to disturbances;
however, open loop control systems are much simpler to build and model. On the other hand, closed loop systems
have a feedback mechanism to reduce the impacts of disturbances. This mechanism adds complexity to the
system, which makes modelling more difficult.
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Chapter 2

Laplace Transforms, Transfer Functions,
& ODEs

2.1 Laplace Transforms

The Laplace transform is a mathematical tool used to take a function of time, 𝑡, and transform it into a function
of the complex frequency variable, 𝑠. The one-sided Laplace tranform is of the form:

𝐹(𝑠) = ℒ [ 𝑓 (𝑡)] =
∞∫

0

𝑓 (𝑡)𝑒−𝑠𝑡𝑑𝑡

Unfortunately, for some values of 𝑠, this integral is undefined.

Definition 2.1.1: Abscissa of Absolute Convergence

The abscissa of absolute convergece is the region in which there

Definition 2.1.2: Unit Impulse Function

The unit impulse function, 𝛿(𝑡) is given by:

𝛿(𝑡) =
{
1 𝑡 = 0

0 elsewhere

The unit impulse function has the Laplace transform:

ℒ [𝛿(𝑡)] =
∫ ∞

0

𝛿(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 1

Definition 2.1.3: Unit Step Function

The unit step function, 𝑢(𝑡) is defined as:

𝑢(𝑡) =
{
1 𝑡 ≥ 0

0 𝑡 < 0

The unit step function has the Laplace transform:

ℒ [𝑢(𝑡)] = 1

𝑠

4



Definition 2.1.4: Unit Ramp Function

The unit ramp function, 𝑣(𝑡) is defined as:

𝑣(𝑡) =
{
𝑡 𝑡 ≥ 0

0 𝑡 < 0

The unit ramp function has Laplace tranform:

ℒ [𝑣(𝑡)] = 1

𝑠2

Example 2.1.1

1. Take the Laplace transform of 𝑓 (𝑡) = 5∀𝑡 ≥ 0:

𝑓 (𝑡) = 5𝑢(𝑡)

𝐹(𝑠) = ℒ [ 𝑓 (𝑡)] = 5

𝑠

2. Take the Laplace transform of 𝑓 (𝑡) = 2𝑡∀𝑡 ≥ 0:

𝑓 (𝑡) = 5𝑣(𝑡)

𝐹(𝑠) = ℒ [ 𝑓 (𝑡)] = 2

𝑠2

3. Take the Laplace transform of 𝑓 (𝑡) = 𝑒−𝑎𝑡 :

𝑓 (𝑡) = 𝑒−𝑎𝑡𝑢(𝑡)

2.1.1 Linearity

By definition, Laplace transforms are a linear mapping.

ℒ [𝑎1 𝑓1(𝑡) + 𝑎2 𝑓2(𝑡)] = 𝑎1𝐹1(𝑠) + 𝑎2𝐹2(𝑠)
Linearity of Laplace Transforms:

ℒ[𝑎1 𝑓1(𝑡) + 𝑎2 𝑓2(𝑡)] =
∞∫

0

(𝑎1 𝑓1(𝑡) + 𝑎2 𝑓2(𝑡)) 𝑒−𝑠𝑡𝑑𝑡

By the distributive property of multiplication:

(𝑎1 𝑓1(𝑡) + 𝑎2 𝑓2(𝑡))𝑒−𝑠𝑡 = 𝑎1 𝑓1(𝑡)𝑒−𝑠𝑡 + 𝑎2 𝑓2(𝑡)𝑒−𝑠𝑡

2.1.2 Differentiation

Differentiation is easy with a Laplace transform:

ℒ [ 𝑓 ′(𝑡)] = 𝑠𝐹(𝑠) − 𝑓 (0)
Where:

𝑓 (0) is the initial condition of the function 𝑓 (𝑡) at 𝑡 = 0

In general:
ℒ[ 𝑓 (𝑛)] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1 𝑓 (0) − 𝑠𝑛−2 𝑓 ′(0) − · · · − 𝑠 𝑓 (𝑛−2)(0) − 𝑓 (𝑛−1)(0)
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2.1.3 Final Value Theorem

Consider 𝐹(𝑠) = 𝑁(𝑠)
𝐷(𝑠) . The poles of 𝐹(𝑠) will occur at the roots of 𝐷(𝑠), and the zeros of 𝐹(𝑠) will occur at the

roots of 𝑁(𝑠).

Theorem 2.1.1 Final Value Theorem

If all of the poles of 𝑠𝐹(𝑠) occur only in the left half plane (LHP):

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹(𝑠)

Example 2.1.2

With all zero initial conditions for 𝑦(𝑡) and 𝑢(𝑡), a system is goverend by this second order ODE:

𝑦′′(𝑡) + 3𝑦′(𝑡) + 2𝑦(𝑡) = 2𝑢′(𝑡) + 𝑢(𝑡)

Using the final value theorem, find lim𝑡→∞ 𝑦(𝑡) if 𝑢(𝑡) = 1

Take the Laplace transforms:
ℒ[𝑦′′(𝑡)] = 𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)

ℒ[𝑦′(𝑡)] = 𝑠𝑌(𝑠) − 𝑦(0)
ℒ[𝑢′(𝑡)] = 𝑠𝑈(𝑠) − 𝑢(0)

Plugging back in:
𝑠2𝑌(𝑠) + 3𝑠𝑌(𝑠) + 2𝑌(𝑠) = 2𝑠𝑈(𝑠) +𝑈(𝑠)

𝑌(𝑠)
𝑈(𝑠) =

2𝑠 + 1

𝑠2 + 3𝑠 + 2

Since 𝑢(𝑡) is the unit step, 𝑈(𝑠) = 1
𝑠

𝑌(𝑠) = 1

𝑠
· 2𝑠 + 1

𝑠2 + 3𝑠 + 2

By the final value theorem of 𝑦(𝑡):

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

𝑠𝑌(𝑠) = lim
𝑠→0

2𝑠 + 1

𝑠2 + 3𝑠 + 2
=

1

2

2.1.4 Initial Value Theorem

Theorem 2.1.2 Initial Value Theorem

lim 𝑡 → 0+ 𝑓 (𝑡) = lim
𝑠→∞

𝑠𝐹(𝑠)

If and only if the limit exists.

2.1.5 Convolution

𝑓1(𝑡) ∗ 𝑓2(𝑡) =
∫
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2.2 Partial Fraction Expansion

One way to compute the inverse Laplace transform is with partial fraction expansion. Given a transfer function,
𝑌(𝑠), it can be broken down into the quotient of two simple transfer functions:

𝑌(𝑠) = 𝑁(𝑠)
𝐷(𝑠) =

𝑏0𝑠
𝑚 + 𝑏1𝑠

𝑚−1 + 𝑏2𝑠
𝑚−2 + · · · + 𝑏𝑚

𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + 𝑎2𝑠𝑛−2 + · · · + 𝑎0

Example 2.2.1 (Partial Fraction Expansion: Distinct Roots)

𝐹(𝑠) = 1

𝑠2 + 5𝑠 + 6

Factoring the denominator gives:

𝐹(𝑠) = 1

(𝑠 + 3)(𝑠 + 2) =
𝑐1

𝑠 + 3
+ 𝑐2

𝑠 + 2

Find values for 𝑐1 and 𝑐2:

𝑐1 = lim
𝑠→−3

𝐹(𝑠)(𝑠 + 3) = lim
𝑠→−3

1

𝑠 + 2
= −1

𝑐2 = lim
𝑠→−2

𝐹(𝑠)(𝑠 + 2) = lim
𝑠→−2

1

𝑠 + 3
= 1

Plugging back in for 𝐹(𝑠) gives:
𝐹(𝑠) = −1

𝑠 + 3
+ 1

𝑠 + 2

Example 2.2.2 (Partial Fraction Expansion: Repeated Roots)

𝐹(𝑠) = 1

(𝑠 + 1)(𝑠 + 2)2

Since the denominator is a third degree polynomial, there will be three partial fractions. Importantly, for
repeated roots, there is a term for each power of the root:

𝐹(𝑠) = 𝑐1

𝑠 + 1
+ 𝑐2

𝑠 + 2
+ 𝑐3

(𝑠 + 2)2

Find the values of the constants:

𝑐1 = lim
𝑠→−1

𝐹(𝑠)(𝑠 + 1) = lim
𝑠→−1

1

(𝑠 + 2)2 = 1

𝑐3 = lim
𝑠→−2

𝐹(𝑠)(𝑠 + 2)2 lim
𝑠→−2

1

𝑠 + 1
= −1

To solve for 𝑐2, we must pick some random, preferably easy to work with, number to plug in for 𝑠:

𝐹(0) = 1

4
=

𝑐1

1
+ 𝑐2

2
+ 𝑐3

3

1

4
= 1 + 𝑐2

2
+ −1

4

𝑐2 = −1
To complete the inverse Laplace transform, plug in the constants:

𝐹(𝑠) = 1

𝑠 + 1
− 1

𝑠 + 2
− 1

(𝑠 + 2)2

𝑓 (𝑡) =
[
𝑒−𝑡 − 𝑒−2𝑡 + 𝑡𝑒−2𝑡

]
𝑢(𝑡)
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Example 2.2.3 (Partial Fraction Expansion: Imaginary Roots)

𝐹(𝑠) = 1

𝑠(𝑠2 + 2𝑠 + 2)
Convert to partial fractions:

𝐹(𝑠) = 𝑐1

𝑠
+ 𝐴𝑠 + 𝐵

𝑠2 + 2𝑠 + 2

Solve for constants:

𝑐1 = lim
𝑠→0

𝐹(𝑠) = 1

2

1

𝑠(𝑠2 + 2𝑠 + 2) =
1

2𝑠
+ 𝐴𝑠 + 𝐵

𝑠2 + 2𝑠 + 2

1

𝑠(𝑠2 + 2𝑠 + 2) =
(𝑠2 + 2𝑠 + 2) + 2𝑠(𝐴𝑠 + 𝐵)

2𝑠(𝑠2 + 2𝑠 + 2)
2 = (𝑠2 + 2𝑠 + 2) + 2𝐴𝑠2 + 2𝐵𝑠

2 = (2𝐴 + 1)𝑠2 + 2𝑠(𝐵 + 1) + 2

𝐴 = −1

2

𝐵 = −1

𝐹(𝑠) = 1

2𝑠
+

− 1
2 𝑠 − 1

𝑠2 + 2𝑠 + 2

2.3 Solving ODEs Using Laplace Transforms

Example 2.3.1

¥𝑦(𝑡) − 𝑦(𝑡) = 𝑡

𝑦(0) = ¤𝑦(0) = 1

ℒ[ ¥𝑦(𝑡)] = 𝑠2𝑦(𝑠) − 𝑠 ¤𝑦(0) − 𝑦(0)
ℒ[𝑦(𝑡)] = 𝑦(𝑠)

ℒ[𝑡] = 1

𝑠2

𝑠2𝑦(𝑠) − 𝑠 − 1 − 𝑦(𝑠) = 1

𝑠2

𝑦(𝑠)[𝑠2 − 1] = 𝑠 + 1 + 1

𝑠2

𝑦(𝑠)[𝑠2 − 1] = 𝑠2(𝑠 + 1) + 1

𝑠2

𝑦(𝑠) = 𝑠2(𝑠 + 1) + 1

𝑠2(𝑠2 − 1) =
1

𝑠 − 1
+ 1

𝑠2(𝑠2 − 1) =
1

𝑠 − 1
+ 𝑐1

𝑠
+ 𝑐2

𝑠2
+ 𝑐3

𝑠 − 1
+ 𝑐4

𝑠 + 1
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Chapter 3

Modeling of Dynamical Systems

The transfer function of a system is written in the form:

𝐹(𝑠) = 𝑌(𝑠)
𝑋(𝑠) =

𝑏𝑚𝑠
𝑚 + 𝑏𝑚−1𝑠𝑚−1 + · · · + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 + · · · + 𝑎0

The numerator of the system has order 𝑚, and the denominator has order 𝑛. We say that the order of the system
is the same as the order of the denominator. The roots of the numerator are the zeros of the transfer function and
are usually plotted with ◦. The roots of the denominator are the poles of the transfer function and are usually
plotted as ×.

The goal of using this transfer function is to find the output, 𝑦(𝑡), of the system. Using the definition of the
transfer function, this is done quite easily:

𝐹(𝑠) = 𝑌(𝑠)
𝑋(𝑠)

𝑌(𝑠) = 𝑋(𝑠)𝐹(𝑠)
𝑦(𝑡) = ℒ−1 {𝑌(𝑠)} = ℒ−1 {𝑋(𝑠)𝐹(𝑠)}

𝑦(𝑡) = 𝑥(𝑡) 𝑓 (𝑡)
If 𝑥(𝑡) is the unit step, 𝑢(𝑡), the output is called the step response, if 𝑥(𝑡) is the Dirac delta function, 𝛿(𝑡), the
output is called the impulse response, and if 𝑥(𝑡) is the ramp function, 𝑣(𝑡), the output is called the velocity
response.
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Chapter 4

Signal Flow Graphs

Signal flow graphs are an alternative to block diagrams. They may consist of nodes, paths, gains, and loops. A
node is a place on the diagram with a value defined as the sum of its inputs. Nodes may exist as inputs to the
system, outputs from the system, or simply a measurable point in the system. Paths connect nodes together,
showing the direction that a signal travels. Gains describe how a signal transforms when travelling along a path
from one node to another. Loops are a series of at least one path that start and end at the same node.

There exist some special types of paths and loops. A forward path connects the input directly to the out-
put with no loops. A feedback path is just a loop, also called a feedback loop. A self-loop is a loop that connects
a node back to itself without visiting any other nodes.

Mason’s Rule:

𝐺(𝑠) = 𝐶(𝑠)
𝑅(𝑠) =

∑
𝑘 𝑇𝑘Δ𝑘

Δ

where 𝑘 is the number of forward paths, and 𝑇𝑘 is the gain of the 𝑘th forward-path, Δ is the determinant of the
signal flow graph, and Δ𝑘 is the associated path factor.
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