
Frequency Modulation and Demodulation
1st Aidan Sharpe

Electrical and Computer Engineering
Rowan University

Glassboro, United States
sharpe23@students.rowan.edu

2nd Elise Heim
Electrical and Computer Engineering

Rowan University
Glassboro, United States

heimel27@students.rowan.edu

3rd John Leahy
Electrical and Computer Engineering

Rowan University
Glassboro, United States

leahyj92@students.rowan.edu

I. INTRODUCTION

No matter your location on Earth, as long as NOAA 15,
18, or 19 are in orbit, you will be able to receive their
transmissions multiple times everyday. These weather satellites
are in polar orbits around the Earth and constantly broadcast
a real-time picture feed of the atmosphere to receivers below.
Our research focused on how these pictures are broadcast, how
they may be received, and how to reconstruct the images.

NOAA 15, 18, and 19 are part of a series of weather
satellites used for atmospheric imaging. NOAA 15, also called
NOAA K, was launched on May 13th, 1998, and became
operational on December 12th, 1998. NOAA 18, also called
NOAA N, started its mission in 2005 . NOAA 19, also called
NOAA N’ (read N-prime), became operational in 2009, and
is intended to replace NOAA 18 sometime in the future.

II. POLAR ORBITING SATELLITES

Polar orbits are a type of satellite orbit, where the satellite
travels over Earth’s poles, typically at an inclination at or
close to 90◦. This orbit allows for the satellite to pass
over nearly every point of the Earth’s surface as the planet
rotates underneath. In the context of satellite communication,
polar orbits are important because of their ability to provide
global coverage, making them suitable for applications such
as Earth observation, weather monitoring, and reconnaissance.
Satellites in polar orbit can capture data over regions that are
challenging to access with other orbital configurations, such
as remote polar areas. In addition, their predictable coverage
patterns make them particularly valuable for environmen-
tal monitoring, disaster management, and scientific research,
while ensuring consistent and comprehensive data collection.

III. NOAA POES

The National Oceanic and Atmospheric Administration
(NOAA) has many environmental satellites that it uses to mon-
itor the Earth’s environment, weather, and climate. One such
type is the Geostationary Operational Environmental Satellites
(GOES). The GOES satellites, as their name suggests, are
stationary satellites relative to Earth’s surface. This is because
they move in sync with the rotation of the Earth, so their
position remains in place over fixed points on the planet’s
surface. GOES delivers rapid, high-resolution, color imagery
of the Earth’s atmosphere. Polar Operational Environmental
Satellites (POES), on the other hand, operate in polar orbits.

These offer the advantage of global coverage daily, because
the satellites orbit multiple times a day, every day. This
makes POES great for environmental monitoring applications
including weather analysis and forecasting, climate research
and prediction, forest fire detection, global vegetation analysis,
search and rescue, and many more applications. [4]

In our case, the GOES satellites are sending too much data
for us to receive with our inexpensive setup. However, the
POES series transmits greyscale images, which is much less
data than color images. This is a huge benefit for us, which
makes POES satellites more attractive for us to listen to.

IV. AUTOMATIC PICTURE TRANSMISSION

The POES satellites broadcast images using the Automatic
Picture Transmission (APT) system. Our best resource for the
APT system was the NOAA KLM User’s Guide [1]. This user
guide is official NOAA documentation for the NOAA KLM
satellites as well as NOAA N and N’.

The data pipeline for the APT system is as follows. First,
the Advanced Very High Resolution Radiometer (AVHRR)
sends a ten-bit word to the digital processor. The eight most
significant bits of the processed data are then passed through
a digital-to-analog converter and filtered. Then, the data is
modulated onto the 2400 Hz sub-carrier using amplitude
modulation. Finally, the signal is modulated for a second
time, this time using frequency modulation, at the satellite’s
broadcast frequency [1].

The image is broadcast pixel-by-pixel in lines of 2080
pixels. Two of the AVHRR sensor channels are broadcast at
any given time, and 909 pixels per line are allotted to each
channel. Lines of pixels are broadcast at a rate of two lines
per second, for a total of 4160 words per second [1].

It is important to note that not all data transmitted is video
data, as 909 pixels per channel times two channels is less than
the total 2080 pixels per line. In addition to the 909 words of
video data, each channel is also allotted 39 words of sync data,
47 words of space and minute marker data, and 45 words of
telemetry data [1].

V. DOWNLINK SETUP

Our receiver, just like any communication link, has multiple
layers of communication. Our setup included a dipole antenna,
a 50Ω RF coaxial cable, an RTL-SDR v3, and several software
tools.

A. Antenna

Choosing an antenna was one of the more difficult design
decisions we had to make. For our initial tests, we used a
simple dipole setup, but we also explored some other designs
such as the double crossed dipole [3], and the quadrifilar
helix (QFH) [5]. With our limited resources, however, these
more advanced antenna designs proved to be too difficult to
construct.

The satellites that we listened to broadcast between about
137 [MHz] and 138 [MHz]. The optimal length for our
setup was a “quarter-wave” antenna, where each of the two
elements is set to λ/4, or one quarter the wavelength. With
the transmission frequency in mind, the optimal length can be
found by

λ

4
=

c

4fc
(1)

where c is the speed of light (3 × 108 [m/s]) and fc is the
carrier frequency. Using 137 [MHz] as the carrier frequency
gives an optimal length of about 54.7 [cm].

Since the signal we are listening for is circularly polarized,
if the dipole elements are along the same axis, the signal will
be in a null for at least half of the time. This effect was
minimized by setting the elements at 120◦ to each other as
seen in figure 1.

B. Radio Receiver

The remaining portions of our physical layer were contained
within the RTL-SDR, a simple, affordable software defined
radio device. It has an SMA connector to interface with
our 50Ω coaxial cable, and a USB connector to plug into a
computer.

Fig. 1. Dipole antenna dimensions

C. Low-Level SDR Software

Before we could begin to write software for the RTL-SDR,
we explored some pre-existing low-level tools. These included
librtlsdr, a common driver for the device, and pyrtlsdr, a
Python wrapper for the driver. Together, these tools helped
us perform basic tasks such as setting the center frequency,
sample rate, gain, and frequency correction, as well as reading
complex samples from the tuner.

A more useful way to read samples is through the driver’s
support of asynchronous streaming. This technique allows for
a constant stream of samples provided in chunks of a given
size. For our tests, we used sizes of 512, 1024, and 65536. It

is important that the size of the chunk is a power of two, as
it drastically speeds up the fast Fourier transform (FFT).

D. High-Level SDR Software

Our software contribution to this project involved taking the
samples from the SDR, then re-creating and interpreting the
message signal. Since APT modulates its message using both
AM and FM, we wrote demodulation code for both.

We utilized SDRangel, which is an open-source software
designed for Software Defined Radio (SDR). It also includes
a satellite tracker, which was helpful for finding the locations
of the POES satellites. Most importantly, it includes a pre-
made demodulator and display for APT signals. We were able
to utilize this feature to test that our physical setup worked,
without having to debug any of our own code.

VI. DEMODULATING FM
The first step to recovering the images from the satellites

is to demodulate the FM signals they broadcast. If we had
to wait for one of the three satellites to pass every time we
wanted to test or debug our code, the development process
would be slowed to a crawl. Therefore, we focused our efforts
on recovering the message from another FM source on a
frequency band no too far away from that of the satellites’:
broadcast FM radio.

The signal emmitted by an FM transmitter is typically of
the form

s(t) = Ac cos(2πfct+ βfm(t)) (2)

where Ac is the transmitted amplitude, fc is the carrier
frequency, βf is the frequency modulation index, and m(t)
is the original message signal.

When we receive the signal from the RTL-SDR, we are
given a series of IQ samples [2]. To recover the message
we used the demodulation function seen in listing 1. To
demodulate an FM signal, we must know the instantaneous
frequency. Our demodulation works by taking the product of
the current sample and the complex conjugate of the next
sample. The current sample can be written as ej2π(fn+ϕ),
and the conjugate of the next sample can be written as
e−j2π(f(n−1)+ϕ). The product will be ej2πf , and we are left
with f when taking the angle of this phasor [2].

While the broadcast FM does not transmit images, it is a
constant source of FM transmission. We determined that the
best way to know if our setup worked was if we could listen
to the radio in real time. Doing so required one more tool,
a library to play the demodulated message using computer’s
audio device. We opted to use the sounddevice library for
Python due to our prior experience with it, and its simple,
yet comprehensive functionality. Specifically, the sounddevice
library allowed us to send a constant stream of samples to the
audio device. This functionality proved to be critical for real
time audio playback.

Our broadcast FM demodulation pipeline worked as fol-
lows. First, an asynchronous sample stream would be set up
to read 512 samples at a time. Then, we passed the samples to
a demodulation function, which would return the samples of

the message and a time axis for the message samples. Finally,
we normalized the message for sound card compatibility and
added the message samples to the audio output stream. By
running both streams simultaneously, we were able to receive,
process, and play back broadcast FM in real time.

VII. RESULTS & DISCUSSION

Our broadcast FM demodulator worked wonderfully. Just
by changing the center frequency of the SDR (a single line
of code), we were able to tune to a wide array of stations.
Unfortunately, we also discovered a flaw with our setup. It
was possible for adjacent stations with a stronger signal to
overpower the signal from the station to which we were tuned.
The best way to fix this is by applying a bandpass filter to the
incoming signal, we would eliminate other stations.

Additionally, when testing alternative antennas, we used the
broadcast FM demodulator to get a rough idea for where the
nulls of our antennas were. This process helped us eliminate
some designs.

Getting the code to work for the broadcast FM demodulator
was tricky, getting a real-time image receiver to work was even
harder. No longer were we able to test our code whenever
we wanted to. Instead, we would have to wait for a satellite
transit. This obstacle made further development very difficult.
To maximize the number of debugging attempts, we utilized
a satellite tracker tool that provided us with a ten-day outlook
of transit predictions.

To get an initial idea of how well our physical setup would
work, we used a the SDRangel software during a transit on a
clear night. We were able to recover the image seen in figure
2. At first glance, the image is very noisy and one could easily
be convinced that there was no image at all. There do appear
to be some Earthly formations in the darker regions of image
on the right.

Fig. 2. NOAA 15

Compared to the image received duirng a transit of NOAA
18 on an overcast day, seen in figure 3, the NOAA 15 image
appears quite clear.

We believe that our reduced signal quality during this
NOAA 18 transit is due to several environmental factors
including the overcast weather and our view of the satellite
being obstructed by buildings. Additionally, the NOAA 18

Fig. 3. NOAA 18

satellite transmits at a very precise 137.9125 [MHz], which
is not easily tuned to using the SDRangel software.

To better improve signal quality for future tests we aim to
do several things. First, we would like to invest in an antenna
better suited for receiving circularly polarized signals. Second,
we would like to look into filters such as surface acoustic
wave (SAW) filters that are purpose-built for the 137[MHz]
range. With these tools, we would likely be able to improve
the quality of our received images.

VIII. CONCLUSION

After extensive research on polar orbiting satellites, NOAA’s
POES series, and automatic picture transmission, we were
ready to try out our own experiment. We made substantial
progress on our program that decodes APT signals from
satellites, as well as building a physical setup to receive these
signals. We tested our setup using SDRangel, and confirmed
that our setup was able to function as intended. However,
after successfully receiving a POES signal from NOAA 15,
we gained more insight into what would make our setup
better suited for APT. Firstly, the small, cheap dipole antenna
is good for receiving linearly polarized signals, such as FM
radio stations. However, the signals from POES are circularly
polarized, so we would require a circularly polarized antenna
to best receive them. In addition to a new antenna, better
amplifiers and filters would allow for the signals to be more
isolated when we received them. We also learned that decoding
the POES signals is a bit difficult, especially when attempting
to time-synchronize the transmission to our receiving end.

APPENDIX

Listing 1. Quadrature demodulation function
def quad demod (samples) :

re turn 0 . 5 * np . a n g l e (samples [: − 1] * np . c o n j (samples [1 :]))

Listing 2. Broadcast FM demodulation and streaming
async def s t a r t (s e l f) :

s e l f . s t r e a m . s t a r t ()

a sync f o r sample s in s e l f . s d r . s t r e a m (s e l f . num samples) :
message = dsp . quad demod (samples)
message = dsp . lowpass (message , 16E3 , s e l f . s d r . s a m p l e r a t e)
message /= np . max (np . abs (message))

t ime = l e n (message) / s e l f . s d r . s a m p l e r a t e
num samples = i n t (t ime * s e l f . a u d i o s a m p l e r a t e)
message = sp . s i g n a l . r e s a m p l e (message , num samples)

message = message . a s t y p e (np . f l o a t 3 2)
s e l f . s t r e a m . w r i t e (message)

REFERENCES

[1] Kathy Kidwell (NOAA) et al. NOAA KLM User’s Guide
with NOAA-N, N Prime, and MetOp Supplements. 2014.
URL: https://www.star.nesdis.noaa.gov/mirs/documents/
0.0 NOAA KLM Users Guide.pdf.

[2] Dr. Marc Lichtman. PySDR: A Guide to SDR and DSP
using Python. 2024. URL: https://pysdr.org/index.html#.

[3] Gerald Martes. “Double Cross — A NOAA Satellite
Downlink Antenna”. In: (2008). URL: https://www.qsl.
net/py4zbz/DCA.pdf.

[4] Polar Operational Environmental Satellites (POES)
Overview. URL: https://www.noaasis.noaa.gov/POLAR/
poes overview.html.

[5] Romi Wiryadinata et al. “Image Data Acquisition for
NOAA 18 and NOAA 19 Weather Satellites Using QFH
Antenna and RTL-SDR”. In: MATEC Web of Confer-
ences. 2018.

