\hypertarget chapter-3}{% \section{Chapter 3}\label{chapter-3}} \hypertarget{example}{% \subsubsection{Example}\label{example}} Suppose there are 30 resistors, 7 of them do not work. You randomly choose 3 of them. Let \(X\) be the number of defective resistors. Find the probability distribution of \(X\). \[ X = [0,3]\] \[P(X=0) = { {7 \choose 0} {23 \choose 3} \over {30 \choose 3} } = 0.436\] \[P(X=1) = { {7 \choose 1} {23 \choose 2} \over {30 \choose 3} } = 0.436\] \[P(X=2) = { {7 \choose 2} {23 \choose 1} \over {30 \choose 3} } = 0.119\] \[P(X=3) = { {7 \choose 3} {23 \choose 0} \over {30 \choose 3} } = 0.009\] Probability distribution: \[P(X = x) = \begin{cases} 0.436 & x=0 \\ 0.436 & x=1 \\ 0.119 & x=2 \\ 0.009 & x=3 \end{cases} \] \hypertarget{the-cumulative-distribution-function}{% \subsection{The Cumulative Distribution Function}\label{the-cumulative-distribution-function}} The cumulative distribution function (CDF), \(F(x)\), of a discrete random variable, \(x\), with probability distribution, \(f(x)\), is: \[F(x) = P(X \le x)\] Find CDF for the example above: \[F(0) = P(X \le 0) = P(X = 0) = 0.436\] \[F(1) = P(X \le 1) = P((X = 0) \cup (X=1)) = 0.872\] \[F(2) = P(X \le 2) = P((X=0) \cup (X=1) \cup (X=2)) = 0.991\] Since 3 is the largest possible value for \(x\): \[F(3) = P(X \le 3) = 1\] As a piecewise function: \[F(x) = \begin{cases} 0 & x < 0 \\ 0.436 & 0 \le x < 1 \\ 0.872 & 1 \le x < 2 \\ 0.991 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}\] \hypertarget{exercise}{% \subsubsection{Exercise}\label{exercise}} Suppose that a days production of 850 manufactured parts contains 50 parts that to not conform to customer requirements. 2 parts are selected at random from the batch. Let \(X\) be the number of non-conforming parts. \hypertarget{a}{% \paragraph{a)}\label{a}} Find the probability distribution for \(X\) \[P(X = 0) = { {50 \choose 0} {800 \choose 2} \over {850 \choose 2 }} = 0.8857\] \[P(X = 1) = { {50 \choose 1} {800 \choose 1} \over {850 \choose 2 }} = 0.1109\] \[P(X = 2) = { {50 \choose 2} {800 \choose 0} \over {850 \choose 2 }} = 0.0034\] \[P(X = x) = \begin{cases} 0.8857 & x=0 \\ 0.1109 & x=1 \\ 0.0034 & x=2 \end{cases} \] \hypertarget{b}{% \paragraph{b)}\label{b}} Find the CDF \(F(x)\) \[F(x) = \begin{cases} 0 & x < 0 \\ 0.8857 & 0 \le x < 1 \\ 0.9966 & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}\] \hypertarget{c}{% \paragraph{c)}\label{c}} Plot \(F(x)\): \hypertarget{continuous-probability-distributions}{% \subsection{Continuous Probability Distributions}\label{continuous-probability-distributions}} A continuous random variable is a variable that can take on any value within a range. It takes on infinitely many possible value within the range. \includegraphics{NormalDistribution.png} For a continuous distribution, \(f(x)\): \[P(X = x) = 0\] \[P(x_0 \le X \le x_1) = \int\limits_{x_0}^{x_1} f(x) dx\] \[P(X \ge x_0) = \int\limits_{x_0}^{\infty} f(x) dx\] \hypertarget{definition}{% \subsubsection{Definition}\label{definition}} The function, \(f(x)\), is a probability density function fo the continuous random variable, \(X\), defined over \(\Reals\) if: \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \[f(x) \ge 0, \forall x \in \Reals\] \item \[\int\limits_{-\infty}^{\infty} f(x) dx = 1\] \item \[P(x_0 \le X \le x_1) = P(x_0 < X < x_1)\] \[= P(x_0 \le X < x_1)\] \[= P(x_0 < X \le x_1)\] \end{enumerate} \hypertarget{example-1}{% \subsubsection{Example}\label{example-1}} Suppose that the error in the reaction temperature in \(^\circ \text{C}\) for a controlled lab experiment is a continuous random variable, \(X\), having PDF: \[f(x) = \begin{cases} {x^2 \over 3} & -1 < x < 2 \\ 0 & elsewhere \end{cases}\] \hypertarget{a-1}{% \paragraph{a)}\label{a-1}} Verify that \(f(x)\) is a PDF. \[\int\limits_{-1}^{2} {x^2 \over 3} dx \stackrel{?}{=} 1\] \[{1 \over 3} \left[{1 \over 3} x^3 \Big\vert_{-1}^{2}\right] = {1\over9}[8- (-1)] = 1\] \hypertarget{b-1}{% \paragraph{b)}\label{b-1}} Find \(P(0 < X < 0.5)\): \[P(0 < X < 0.5) = \int\limits_0^{0.5} {x^2 \over 3}dx\] \[{1\over9}\left[x^3 \Big|_0^{0.5}\right] = {1\over9}[0.125] = 0.01389\] \hypertarget{definition-1}{% \subsubsection{Definition}\label{definition-1}} The CDF, \(F(x)\) of a continuous random variabl, \(X\), with probability density function \(f(x)\) is: \[F(x) = P(X \le x) = \int\limits_{-\infty}^x f(t) dt\] \textbf{Note:} \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \[P(a < X < b) = F(b) - F(a)\] \item \[f(x) = {d\over dx}F(x)\] \end{enumerate} \hypertarget{example-2}{% \subsubsection{Example}\label{example-2}} Find the CDF of the previous example \[f(x) = \begin{cases} {x^2 \over 3} & -1 < x < 2 \\ 0 & elsewhere \end{cases}\] \[F(x) = \int\limits_{-1}^x {t^2 \over 3} dt\] \[{1/over 9}\left[t^3\Big|_{-1}^x\right] = {1\over 9}\left[x^3 + 1\right]\] \[F(x) = \begin{cases} 0 & t < -1 \\ {1\over 9} \left[x^3 + 1\right] & -1 \le x \le 2 \\ 1 & elsewhere \end{cases}\] \hypertarget{example-3}{% \subsubsection{Example}\label{example-3}} The proportion of the budget for a certain type of industrial copany that is allotted to environmential and pollution control is coming under scrutiny. A data collection project determines that the distribution of these proportions is given by: \[f(y) = \begin{cases} k(1-y)^4 & 0 \le y \le 1 \\ 0 & elsewhere \end{cases}\] Find \(k\) that renders \$f(y) a valid density function: \[\int\limits_0^1 k(1-y)^4dy = 1\] \[{k\over5} = 1\] \[\therefore k = 5\]