\documentclass{article} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{graphicx} \usepackage{listings} \usepackage{caption} \usepackage{subcaption} \usepackage{float} \usepackage[margin=1in]{geometry} \title{} \author{Aidan Sharpe \& Elise Heim} \DeclareMathOperator{\sinc}{sinc} \begin{document} \begin{titlepage} \maketitle \end{titlepage} \begin{abstract} \end{abstract} \section{Introduction} \section{Results \& Discussion} \subsection{Uniform Convergence} Consider the discrete time signal, $x[n] = a^n u[n]$, where $u[n]$ is the unit-step and $a=0.9$. Let $X(e^{j\omega})$ be the discrete time Fourier transform (DTFT) of $x[n]$. For the DTFT of a signal to exist, it must be absolutely summable over all $n \in \mathbb{Z}$. If the signal is absolutely summable, then it must also be bounded, meaning $|x[n]| < \infty, \forall n \in \mathbb{Z}$. In other words, $x[n]$ must have a finite maximum value. \\ \\ In this case, $x[n]$ is bounded because $a^n$ grows with smaller values of $n$, and $u[n]$ is zero when $n<0$. Therefore, the maximum value of $x[n] = a^n u[n]$ is $x[0] = a$. \\ \\ Additionally, $x[n]$ takes the form of a geometric series, so its sum is given by \begin{equation} \sum_{n=m}^\infty s^n = {s^m \over 1-s}, |s| < 1. \end{equation} In this case, $m=0$, because the signal has no value for $n<0$. Since $a=0.9$, the sum evaluates to is ${1 \over 1-0.9} = 10$. Considering that $x[n]$ is always a positive real number, each term is its own absolute value, so the sum and the absolute sum are equivalent. By taking the absolute sum of the first 200 terms of $x[n]$, it becomes clear that it approaches 10 in the limit, seen in figure \ref{fig:abs_sum_anun}. \begin{figure}[h] \center \includegraphics[width=\textwidth]{abs_sum_anun.png} \caption{The signal value of $x[n]=a^n u[n]$ and its absolute sum} \label{fig:abs_sum_anun} \end{figure} \section{Conclusions} \end{document}