Aidan Sharpe & Elise Heim March 18, 2024

Abstract

1 Introduction

2 Results & Discussion

2.1 Uniform Convergence

Consider the discrete time signal, $x[n] = a^n u[n]$, where u[n] is the unit-step and a = 0.9. Let $X(e^{j\omega})$ be the discrete time Fourier transform (DTFT) of x[n]. For the DTFT of a signal to exist, it must be absolutely summable over all $n \in \mathbb{Z}$. If the signal is absolutely summable, then it must also be bounded, meaning $|x[n]| < \infty, \forall n \in \mathbb{Z}$. In other words, x[n] must have a finite maximum value.

In this case, x[n] is bounded because a^n grows with smaller values of n, and u[n] is zero when n < 0. Therefore, the maximum value of $x[n] = a^n u[n]$ is x[0] = a.

Additionally, x[n] takes the form of a geometric series, so its sum is given by

$$\sum_{n=m}^{\infty} s^n = \frac{s^m}{1-s}, |s| < 1.$$
 (1)

In this case, m = 0, because the signal has no value for n < 0. Since a = 0.9, the sum evaluates to is $\frac{1}{1-0.9} = 10$. Considering that x[n] is always a positive real number, each term is its own absolute value, so the sum and the absolute sum are equivalent. By taking the absolute sum of the first 200 terms of x[n], it becomes clear that it approaches 10 in the limit, seen in figure 1.

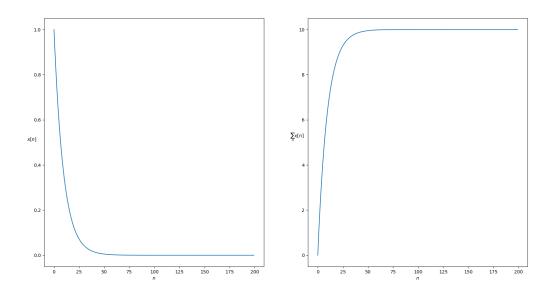


Figure 1: The signal value of $x[n] = a^n u[n]$ and its absolute sum

3 Conclusions