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Classic Modern

Optimal Control Differential Games

Predictive Guidance

Differential game theory considers an 
intelligent target which is trying to 
avoid the interceptor. This results in a 
two-side optimal control problem

Predictive guidance laws consider the 
target’s trajectory to be known. A 
target’s trajectory is considered in the 
intercept geometry to generate 
guidance commands

Non-Homing

Intuitive Other Branches

Other branches of modern guidance 
consider multiple hypothesis target 
models, fuzzy logic in guidance law 
selection or guidance gain criteria, or 
applying principles of other scientific 
research to the guidance problem

Optimal control guidance laws consider 
optimizing a cost (final interceptor 
speed or miss distance) while often 
considering additional constraints to 
the optimization problem. 

Position / orientation of interceptor 
relative to natural landmarks (stars, 
etc.) are used to compute guidance 
commands. Note that the intercept 
point is a point that can always be 
described relative to natural landmarks 
such as celestial bodies, terrain, etc.

Simple guidance algorithms designed 
to drive the missile to intercept based 
upon common sense and/or maritime 
experience, etc.
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Proportional Navigation
• True PN
• Pure PN
• Augmented PN

Differential Games
• Pursuit-Evasion
• Zero Sum Games
• Non-zero Sum Games

Optimal Control Differential Games

Optimal Guidance 
• Optimal Guidance
• Augmented Guidance
• Rendezvous Guidance
• Kappa Guidance
• 𝐻∞ Control

Probability
• IMM / MM

Logic
• Fuzzy Logic 
• Neural Network
• Bang-Bang

ZEM
Linear target
Ballistic Target
Maneuvering Target
Single/Multiple Hypothesis Targets

• Modern guidance laws 
are developed using 
mathematical rigor and 
optimization theory

• Selection of optimization 
criteria / constraints by 
the designer means there 
is no limit to the number 
of optimal laws

Predictive GuidanceOther Branches

Modern
1960s-Present

Predictive guidance and 
optimal control guidance 
laws typically go hand-in-
hand



Modern Guidance Laws

❑ Modern guidance laws are designed to perform a given operation in an optimal manner

➢ Optimality is always with respect to some condition 

➢ Optimality may also have constraints

❑ Example:

➢ Function: Synthesis a trajectory from a guidance law

➢ Optimality condition: Minimize the total 𝑎⊥ (i.e. minimize 0׬
𝑇
𝑎⊥
2 𝑑𝑡)

➢ Constraints: 1. Hit the target

2. Interceptor must have a flight path angle of -20°

❑ Specifying HOW the interceptor is to hit the target is a very powerful tool

❑ Geometric limitations to be mitigated

➢ Crossing angle (warhead effectiveness, gimbal limitation)

➢ RF propagation loss (multipath effects)
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Optimization Toolbox

❑ There are many methods of optimization including

➢ Calculus of Variations

➢ Iterative methods

➢ Steepest Descent

➢ Pontryagin’s (Maximization) Principle

❑ One should always (if possible) choose the method best suited for the problem at hand

❑ A brief description of the calculus of variations method will be shown, and then we will use 
that method to develop an optimal guidance law
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Calculus of Variations I
Optimization Toolbox

❑ The essence of the calculus of variations is to find a function 𝑦(𝑥) such that the following 
integral is minimized

𝐽 = 𝑎׬
𝑏
𝐹 𝑥, 𝑦, 𝑦′ 𝑑𝑥

❑ Without constraints, this problem is solved using the Euler-Lagrange equation

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
= 0

➢ Where

▪ 𝑥 is the independent variable

▪ 𝑦 is the state variable

❑ Calculus of variations allow one to add additional constraints to optimization problem

➢ “Hit the target” 

➢ “The missile must have a flight path angle of -20° when it collides with the target”

➢ “The missile must hit the target with a crossing angle of 0° ”
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Calculus of Variations II
Optimization Toolbox

❑ Each constraints require an integrals to be solved

𝐶𝑖 = 𝑎׬
𝑏
𝑓𝑖 𝑥, 𝑦, 𝑦

′ 𝑑𝑥

𝑖 = 1, 2, 3, …𝑛th constraint

❑ Now the Euler-Lagrange equation for optimality becomes

𝜕𝐹

𝜕𝑦
− σ𝑖=1

𝑛 𝑘𝑖
𝜕𝑓𝑖

𝜕𝑦
−

𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
− σ𝑖=1

𝑛 𝑘𝑖
𝜕𝑓𝑖

𝜕𝑦′
= 0

➢ Where 𝑘𝑖 constants are solved by initial or final conditions
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Optimal Guidance (OG) to a Predicted 
Intercept Point (PIP)

❑ Derive an optimal guidance law to a predicted intercept point

➢ Optimality condition: Minimize the induced drag over the flight of the missile

➢ Constraints: 1. Hit the target

❑ Remember from previous lectures:

➢ Induced drag, 𝐷𝑖 = 𝐶𝐷𝐼 𝑄 𝑆𝑅𝑒𝑓

➢ 𝐶𝐷𝐼 =
𝑛𝑧
2𝑊2

𝐶𝑁𝛼 𝑄2 𝑆𝑟𝑒𝑓
2 ∝ 𝑛𝑧

2

❑ By minimizing the square of the acceleration over the trajectory, induced drag is minimized 
over the trajectory

➢ i.e. min 0׬
𝑇
𝑛𝑧
2 𝑑𝑡
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Induced drag is minimized when the 
square of the acceleration us minimized



Notes on Minimizing Induced Drag
OG to a PIP

❑ The concept of optimization by minimizing induced drag is a canonical form of guidance 
optimization

➢ It is assumed to be the most efficient trajectory (least amount of missile speed loss)

❑ To claim minimization of induced drag will maximize intercept velocity is only true if one 
ignores the contribution of zero-lift drag  or assumes the summation of induced drag over 
time is much larger than the summation of zero-lift drag over time, i.e.

0׬
𝑇0𝐷𝑖 𝑑𝑡 = 0׬

𝑇0 𝐶𝐷𝐼 𝑄 𝑆𝑅𝑒𝑓 𝑑𝑡 ≫ 0׬
𝑇0𝐷𝑍𝐿𝐷 𝑑𝑡 = 0׬

𝑇0 𝐶𝐴 𝑄 𝑆𝑅𝑒𝑓 𝑑𝑡

❑ A closed form solution to the problem of maximizing missile speed when intercepting a 
target in the presence of a realistic atmospheric model does not exist today
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Optimal Guidance Derivation
OG to a PIP

❑ The illustration to the right is the same as used 
for the derivation of midcourse PN

❑ Similar to the previous derivations, we start by 
defining the basic geometry of the problem

Eq. OG-1 𝛿 = 𝛾𝑀 + 𝜎

Eq. OG-2 𝑧𝑀 − 𝑧𝑓 = 𝑅𝜎

❑ The relationship of running time to time-to-go 
has been defined in the previous lecture, as is the 
transformation of derivatives with respect to 𝑇 as 
opposed to 𝑡. To recap:

Eq. OG-3 𝑇 = 𝑇0 − 𝑡

Eq. OG-4
𝑑

𝑑𝑇
𝐹 = −

𝑑

𝑑𝑡
𝐹

❑ Small angle approximations allow us to define

Eq. OG-5 𝑅 = 𝑉𝑀T cos(𝛿) ≅ 𝑉𝑀 𝑇
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PIP (𝑥𝑓, 𝑧𝑓)

z

x

Trajectory𝛾𝑀 𝛿

𝑉𝑀

𝜎

𝑅

(𝑥𝑀, 𝑧𝑀)



Optimal Guidance Derivation II
OG to a PIP

❑ An attempt is made to describe the 
acceleration perpendicular to the missile 
velocity vector in terms of 𝛾𝑀, 𝜎, and/or 𝛿 and 
their derivatives

❑ To do this, we take the derivative of the 
positional error (i.e. 𝑧𝑀 − 𝑧𝑓) with respect to 

time, which results in a mixture of current time 
derivatives and time-to-go, 𝑇, due to the 
approximation made in Eq. OG-5

❑ Two key assumptions are used to arrive at Eq. 
OG-8 and Eq. OG-9, as we assume that the 
intercept point does not move AND the missile 
speed is constant, but not its direction
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Thus, OG-2 and its derivative become

Eq. OG-6 𝑧𝑀 − 𝑧𝑓 = 𝑉𝑀 𝑇 𝜎

Eq. OG-7 ሶ𝑧𝑀 − ሶ𝑧𝑓 = −𝑉𝑀 𝜎 + 𝑉𝑀 𝑇 ሶ𝜎

From the description of the problem, the following is true

Eq. OG-8 ሶ𝑧𝑓 = 0

Eq. OG-9 ሶ𝑧𝑀 = 𝑉𝑀𝛾𝑀

Eq. OG-10 ሶ𝜎 = ሶ𝛿 − ሶ𝛾𝑀

OG-1, and OG-8 through OG-10 can be substituted into 
OG-7 to yield

Eq. OG-11 𝑉𝑀𝛾𝑀 = −𝑉𝑀 𝛿 − 𝛾𝑀 + 𝑉𝑀 𝑇( ሶ𝛿 − ሶ𝛾𝑀)



Defining the Control
OG to a PIP

❑ The expressions derived for 𝑎⊥ in Eq. OG-12 
and Eq. OG-13 are important – each in their 
own right

❑ Eq. OG-12 is a basic law of motion for an object 
moving in a circle. Since the missile speed must 
remain constant by our problem definition 
(assumption), Eq. OG-12 will be used as the 
control to define how the missile will change 
course

❑ Eq. OG-13 is a different form of the same 
parameter, but it is written in terms of a state 
equation of the system (𝛿) and its derivative 
(𝛿′) and the independent variable, 𝑇

❑ One will use Eq. OG-13 in the cost function 
integral in an attempt to minimize 𝑎⊥

2
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We note from our previous work that the missile 
acceleration perpendicular to the velocity vector is 
described in terms of missile speed and the rate of 
change of the flight path angle

Eq. OG-12 a⊥ = 𝑉𝑀 ሶ𝛾 = −𝑉𝑀𝛾
′

Substituting OG-12 in OG-11 gives the following 
expression for 𝑎⊥in terms of 𝑡 or 𝑇

Eq. OG-13 a⊥ = 𝑉𝑀 ሶ𝛿 −
𝛿

𝑇
= −𝑉𝑀 𝛿′ +

𝛿

𝑇

We wish to develop a guidance law which will minimize 
induced drag, which is related to acceleration  as

Di ~ 𝑎⊥
2



The Optimization Cost Function
OG to a PIP

Notes
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❑ Induced drag is related to the square of the 
acceleration 

❑ Describing a cost function which minimizes the 
integral of 𝑎⊥

2 over the flight time will provide 
the optimal trajectory for this problem

❑ However, to be successful guidance law, the 
missile must hit the target. Thus, our first (and 
only constraint) is for the missile to hit the 
target

❑ This is achieved by requiring the final heading  
to be zero

➢ At time-to-go of zero, the heading error 
must be zero

➢ 𝛿 𝑇 = 0 = 0

To minimize induced drag, we minimize the square of 
the acceleration perpendicular to the velocity vector

Eq. OG-14 𝐽 = 0׬
𝑇0 𝑎⊥

2 𝑑𝑡

Substituting OG-13 into OG-14

Eq. OG-15 𝐽 = 𝑉𝑀
2 0׬

𝑇0 𝛿′ +
𝛿

𝑇

2
𝑑𝑇

The constraint that requires the missile hit the target 
must be expressed as an integral. Therefore, 

Eq. OG-16 𝛿𝑓 = 𝛿0 + 0׬
𝑇0 ሶ𝛿 𝑑𝑡 = 𝛿0 − 0׬

𝑇0 𝛿′ 𝑑𝑇 = 0

OG-15 and OG-16 are will be used to derive an optimal 
guidance law using the Calculus of Variations



Calculus of Variations Problem Statement
OG to a PIP

Notes
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❑ To solve the optimization problem, one needs 
to define the integrand to be optimized and any 
constraint integrands

❑ The integrand to be maximized is 𝐹(𝑥, 𝑦, 𝑦′), 
which is the square of the commanded 
acceleration

❑ 𝑓1 𝑥, 𝑦, 𝑦′ is the constraint integrand

❑ The constraint of hitting the target is based on 
two principles

➢ Heading error is zero at intercept

➢ Intercept will occur when 𝑇 = 0

OG-15 is in the form required by the Euler-Lagrange 
equation within the calculus of variations method:

𝐽 = න
𝑎

𝑏

𝐹 𝑥, 𝑦, 𝑦′ 𝑑𝑥 = 𝑉𝑀
2 න

0

𝑇0

𝛿′ +
𝛿

𝑇

2

𝑑𝑇

Eq. OG-17 𝐹 𝑇, 𝛿, 𝛿′ = 𝛿′ +
𝛿

𝑇

2

OG-16 can be rearranged to match the form required by 
the constraint equation

𝐶𝑖 = න
𝑎

𝑏

𝑓𝑖 𝑥, 𝑦, 𝑦
′ 𝑑𝑥 ⟹ 𝛿0 = න

0

𝑇0

𝛿′ 𝑑𝑇

Eq. OG-18 𝑓1 𝑇, 𝛿, 𝛿′ = 𝛿′



The Euler-Lagrange Equation
OG to a PIP

❑ The Euler-Lagrange equation is reprinted below 
for convenience

𝜕𝐹

𝜕𝑦
− ෍

𝑖=1

𝑛

𝑘𝑖
𝜕𝑓𝑖
𝜕𝑦

−
𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
−෍

𝑖=1

𝑛

𝑘𝑖
𝜕𝑓𝑖
𝜕𝑦′

= 0

❑ For our problem, the first summation term is 
equal to zero since OG-21 is equal to zero

❑ The constant, 𝑘1, is the parameter which must 
be solved using (initial and/or final) known 
conditions

❑ The process of solving  the Euler-Lagrange 
begins by taking  a number of derivatives which 
are to be used in the above equation
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The partial derivatives required for the Euler-Lagrange 
equation are as follows:

Eq. OG-19
𝜕𝐹

𝜕𝛿
= 2 𝛿′ +

𝛿

𝑇

1

𝑇

Eq. OG-20
𝜕𝐹

𝜕𝛿′
= 2 𝛿′ +

𝛿

𝑇

Eq. OG-21
𝜕𝑓1

𝜕 𝛿
= 0

Eq. OG-22
𝜕𝑓1

𝜕 𝛿′
= 1

Substituting OG-19 through OG-22 into the Euler-
Lagrange equation

Eq. OG-23 2 𝛿′ +
𝛿

𝑇

1

𝑇
=

𝑑

𝑑𝑇
2 𝛿′ +

𝛿

𝑇
− 𝑘1



Solving the Differential Equation
OG to a PIP

❑ After simplifying Eq. OG-23, one can quickly 
recognize that Eq. OG-24 can be rewritten in 
terms of 𝑎⊥, making Eq. OG-25 a simple – and 
solvable - differential equation

❑ Eq. OG-27 is the answer the differential 
equation. However, it does not provide a 
complete answer as the constant of integration 
(𝑎⊥) still remains as an unknown

❑ To solve for the unknown, we substitute the Eq. 

OG-13 into the left (a⊥ = −𝑉𝑀 𝛿′ +
𝛿

𝑇
) side of 

Eq. OG-27 and multiply both sides of the 
equation by 𝑇
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The Euler-Lagrange equation is now simplified

Eq. OG-24 𝛿′ +
𝛿

𝑇

1

𝑇
=

𝑑

𝑑𝑇
𝛿′ +

𝛿

𝑇

It is recognized that OG-24 can be put in terms of 𝑎⊥
using Eq. OG-13

Eq. OG-25
𝑎⊥

𝑇
=

𝑑

𝑑𝑇
𝑎⊥

This equation can be rewritten in a form which is easy to 
solve:

Eq. OG-26
𝑎⊥

𝑇
=

𝑑[𝑎⊥]

𝑑 𝑇

Eq. OG-27 𝑎⊥ = 𝑎⊥0
𝑇

𝑇0

Eq. OG-28 −𝑉𝑀 𝛿′𝑇 + 𝛿 = 𝑎⊥0
𝑇2

𝑇0



The Optimal Guidance Law
OG to a PIP

❑ The step used in Eq. OG-29 and OG-30 is the 
only part of this derivation that may not be 
blatantly obvious to the user

❑ Once the substitution is made in Eq. OG-30, the 
rest of the derivation is trivial

❑ One can see in OG-33, that the optimal solution 
is the same as the proportional navigation 
guidance law derived earlier with the 
navigation gain constant set to 3

❑ Previously, the relationship between flight path 
angle, ሶ𝛾𝑀, and line of sight rate, ሶ𝜎, was 
assumed. However, no such assumption was 
made in this derivation yet the result it is clear 
that the proportional relationship exists
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One notes the following :

Eq. OG-29
𝑑

𝑑𝑇
𝛿 𝑇 = 𝛿′𝑇 + 𝛿

Using the relationship from Eq. OG-29, Eq. OG-28 can be 
rewritten

Eq. OG-30 −𝑉𝑀
𝑑

𝑑𝑇
𝛿 𝑇 = 𝑎⊥0

𝑇2

𝑇0

Eq. OG-31 −𝑉𝑀 𝑑 𝛿 𝑇 = 𝑎⊥0
𝑇2

𝑇0
𝑑𝑇

Integrating both sides, and evaluating at 𝑇 = 𝑇0

Eq. OG-32 −𝑉𝑀 𝛿 𝑇 =
𝑎⊥0
3

𝑇3

𝑇0

Eq. OG-33 𝒂⊥𝟎 = −
𝟑 𝑽𝑴 𝜹𝟎

𝑻𝟎

The Optimal Solution Which Minimizes Induced Drag is Proportional Navigation



PN vs OG and the Value of 3

❑ One can see that the optimal navigation to an intercept point is the same as proportional 
navigation to an intercept point with a navigation gain of 3

𝒂⊥ = −
𝟑 𝑽𝑴 𝜹𝟎

𝑻𝟎
= −𝑲

𝑽𝑴𝜹𝟎

𝑻𝟎
= −𝑲 𝑽𝑴 ሶ𝝈

❑ What does the selection of a particular navigation gain physically mean?

❑ To help answer that question, some basic properties of proportional navigation will be 
discussed

➢ 𝛿, ሶ𝜎, and 𝑎⊥ affected as a function of time-to-go, 𝑇

➢ Trajectory synthesis
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Characteristics of the PN/OG as a 
Function of TGO (T)

❑ While it was proven that the optimal value of K 
to minimize induced drag is 3, guidance system 
designers will often use other values of K (often 
to increase missile responsiveness to target 
maneuvers or overcome time constant 
response issues)

❑ Therefore, the characteristics of proportional 
navigation for any value of K is shown to the 
right. Note that it was proven that the optimal 
guidance law is the proportional navigation 
guidance law with K=3

❑ The state variable and trajectory parameters 
over a normalized time period, 𝜏, can be 
derived from the equations we worked through 
today (sounds like homework, doesn’t it?)
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We can normalize the characteristics of the 
guidance law by using the variable, τ, defined as

𝜏 =
𝑇

𝑇0
This provides us a clean, simple way to show the 
trajectory characteristics as function of 𝜏 from 1 
(now) to 0 (intercept)

𝛿 = 𝛿0 𝜏
𝐾−1

𝛾 = 𝛾0 − 𝐾
𝛿0

𝐾 − 1
1 − 𝜏𝐾−1

ሶ𝜎 = ሶ𝜎0 𝜏
𝐾−2

𝜎 = 𝜎0 +
𝛿0

𝐾 − 1
1 − 𝜏𝐾−1

𝑧 = 𝑧𝑓 + 𝑅0 𝜎0 𝜏 +
𝛿0

𝐾 − 1
𝜏 − 𝜏𝐾

𝑥 = 𝑥𝑓 − 𝑅0 𝜏



𝜹 and 𝒂⊥ Over Time

❑ The state variable (𝛿) and the control (𝑎⊥) are a function of the normalizing parameter 𝜏
raised to a power

➢ Acceleration goes as 𝜏𝐾−2 𝛿 𝑇 = 𝛿0 𝜏
𝐾−1

➢ Heading error goes as 𝜏𝐾−1 𝑎⊥ 𝑇 = 𝑎⊥0 𝜏
𝐾−2
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Physical Interpretation of K

❑ Min value of K to guarantee an intercept is 2

❑ Increasing K increases the missile’s responsiveness to heading error

❑ K of 3 will minimize the induced drag on the missile

➢ Maximizes intercept velocity if zero lift drag is negligible with respect to induced drag

➢ “Classic optimization”
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K Result

1 Increasing acceleration, No intercept

2 Constant acceleration, Trajectory is the arc of a circle

3 Linearly decreasing acceleration, min induced drag condition

4 Exponentially decreasing acceleration 



How Should One Think Of Different 
Values of K?

❑ One can arrive at different values of K as optimal solutions to the guidance problem if a slight 
modification is made to the cost function, J

❑ Rewrite Eq. OG-15, but in a more generic fashion by introducing an exponential dependency 
on time-to-go, 𝑇𝑝

𝐽 = 𝑉𝑀
2 න

0

𝑇0 𝛿′ +
𝛿
𝑇

2

𝑇𝑝
𝑑𝑇

❑ When 𝑝 = 0, there is no difference between the cost function above and the one in Eq. OG-
15

❑ It can be shown, that the optimal value of K for this revised cost function is simply 𝐾 = 𝑝 + 3
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K Describes a Late Maneuver Penalty in the Cost Function!



OG to a PIP with a Shaping Constraint

❑ Derive an optimal guidance law to a predicted intercept point

➢ Optimality condition: Minimize the induced drag over the flight of the missile

➢ Constraints: 1. Hit the target

2. Have a final flight path angle of 𝛾𝑓

❑ The concept of a prescribed flight path angle is important when trying to meet geometric 
constraints that were discussed in previous lectures

➢ Expanding crossrange capability

➢ Mitigating multipath

➢ Specific approach geometry

❑ Since this problem is the same as the previous problem, with the additional constraint of a 
final flight path angle, we can borrow heavily from the previous derivation

➢ Eq. OG-1 through Eq. OG-16 are identical and will not be re-derived

➢ We will pick up with the cost function and constraint integrals, and we will begin labeling 
equations with Eq. SG-17 as SG-1 through SG-16 are equal to OG-1 through OG-16
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Euler-Lagrange Equation
OG to a PIP with a Shaping Constraint

Notes
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❑ The core of this problem is identical to the first 
optimization problem

➢ The cost function and the cost integrand 
𝐹(𝑥, 𝑦, 𝑦′) is the same

➢ The first constant function and the constraint 
integrand 𝑓1(𝑥, 𝑦, 𝑦

′) is the same

❑ The optimization problem now has an additional 
constraint which is a function of the flight path 
angle, 𝛾 (Eq. SG-18b)

➢ This constraint has to be described as a 
function of the state variable, 𝛿, and its 
derivative (Eq. SG-20)

➢ To do this, we equate the following 
expressions for 𝑎⊥

▪ 𝑎⊥ = −𝑉𝑀 𝛾′ = −𝑉𝑀 𝛿′ +
𝛿

𝑇

▪ 0׬−
𝑇0 𝛾′ 𝑑𝑇 = 

1

𝑉𝑀
0׬
𝑇0 𝛿′ +

𝛿

𝑇
𝑑𝑇

OG-17 and OG-18 are repeated here as SG-17 and SG-18 
for convenience

𝐽 = න
𝑎

𝑏

𝐹 𝑥, 𝑦, 𝑦′ 𝑑𝑥 = 𝑉𝑀
2 න

0

𝑇0

𝛿′ +
𝛿

𝑇

2

𝑑𝑇

Eq. SG-17 𝐹 𝑇, 𝛿, 𝛿′ = 𝛿′ +
𝛿

𝑇

2

Eq. SG-18 𝐶𝑖 = 𝑎׬
𝑏
𝑓𝑖 𝑥, 𝑦, 𝑦

′ 𝑑𝑥

Eq. SG-18a 𝛿𝑓 − 𝛿0 = 0׬−
𝑇0 𝛿′ 𝑑𝑇

Eq. SG-18b 𝛾𝑓 − 𝛾0 = 0׬−
𝑇0 𝛾′ 𝑑𝑇

Eq. SG-19 𝑓1 𝑇, 𝛿, 𝛿′ = 𝛿′

Eq. SG-20 𝑓2 𝑇, 𝛿, 𝛿′ = 𝛿′ +
𝛿

𝑇



Euler-Lagrange Equation
OG to a PIP with a Shaping Constraint

❑ The Euler-Lagrange equation is reprinted below 
for convenience

𝜕𝐹

𝜕𝑦
− ෍

𝑖=1

𝑛

𝑘𝑖
𝜕𝑓𝑖
𝜕𝑦

−
𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
−෍

𝑖=1

𝑛

𝑘𝑖
𝜕𝑓𝑖
𝜕𝑦′

= 0

❑ The constants, 𝑘1 and 𝑘2, are the parameters 
which must be solved using (initial and/or final) 
known conditions

❑ The equation set to the right is identical to the 
set of equations used during the first 
derivation, augmented by the two additional 
equations required to represent the flight path 
angle constraint (Eq. SG-25 and Eq. SG-26)
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The partial derivatives required for the Euler-Lagrange 
equation are as follows:

Eq. SG-21
𝜕𝐹

𝜕𝛿
= 2 𝛿′ +

𝛿

𝑇

1

𝑇

Eq. SG-22
𝜕𝐹

𝜕𝛿′
= 2 𝛿′ +

𝛿

𝑇

Eq. SG-23
𝜕𝑓1

𝜕 𝛿
= 0

Eq. SG-24
𝜕𝑓1

𝜕 𝛿′
= 1

Eq. SG-25
𝜕𝑓2

𝜕 𝛿
=

1

𝑇

Eq. SG-26
𝜕𝑓2

𝜕 𝛿′
= 1



Solving the Differential Equation
OG to a PIP with a Shaping Constraint

❑ The Euler-Lagrange Equation can be rewritten 
in terms of 𝑎⊥ and simplified, as is done in Eq. 
SG-27 through Eq. SG-29

❑ The “trick” of multiplying both sides of the 

equation by 
1

𝑇
may seem strange, but it affords 

one the ability to describe the equation in a 
more tractable form by recognizing the 
following relationship

𝑑

𝑑𝑇

𝑎⊥

𝑇
=

𝑎⊥
′

𝑇
−

𝑎⊥

𝑇2

❑ Integration of Eq. SG-31 can be done in steps 
prior to arriving at Eq. SG-32 

d
a⊥

𝑇
= −

𝑘2

2

1

𝑇2
𝑑𝑇

𝑎⊥

𝑇
−

𝑎⊥0
𝑇0

= −
𝑘2

2

1

𝑇
−

1

𝑇0
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The Euler-Lagrange equation is now

Eq. SG-27 2 𝛿′ +
𝛿

𝑇

1

𝑇
−

𝑘2

𝑇
=

𝑑

𝑑𝑇
2 𝛿′ +

𝛿

𝑇
− 𝑘1 − 𝑘2

Eq. SG-28 2 𝑎⊥
1

𝑇
−

𝑘2

𝑇
=

𝑑

𝑑𝑇
2 𝑎⊥ − 𝑘1 − 𝑘2

Eq. SG-29 2
𝑎⊥

𝑇
−

𝑘2

𝑇
= 2

𝑑

𝑑𝑇
𝑎⊥ = 2 𝑎⊥

′

Both sides of the above equation can be multiplied by 
1

2𝑇

and simplified:

Eq. SG-30
𝑎⊥
′

𝑇
−

𝑎⊥

𝑇2
= −

𝑘2

2

1

𝑇2

Eq. SG-31
𝑑

𝑑𝑇

𝑎⊥

𝑇
= −

𝑘2

2

1

𝑇2

Multiplying both sides by 𝑑𝑇 and integrating yields:

Eq. SG-32 𝑎⊥ = 𝑎⊥0
𝑇

𝑇0
+

𝑘2

2
1 −

𝑇

𝑇0



Solving for Constants 𝒂⊥𝟎 and 𝒌𝟐
OG to a PIP with a Shaping Constraint

❑ Eq. SG-33 is the normalized form of the 
guidance law, which is normalized using the 
ratio of current time-to-go to initial time-to-go

𝜏 =
𝑇

𝑇0

❑ Normalization is done for convenience, but it 
also allows one to synthesize trajectories in a 
generic form. 

❑ The conversion from 𝑑𝑇 to 𝑑𝜏 between Eq. SG-
35 and Eq. SG-36 results in a factor of 𝑇0

2 being 
pulled out of the integrand on the right. 

𝑇0׬−
0
𝑎⊥ 𝑇 𝑑𝑇 = −𝑇0

2 1׬
0
𝑎⊥ 𝜏 𝑑𝜏
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The guidance law can be written in normalized form as

Eq. SG-33 𝑎⊥ = 𝑎⊥0 𝜏 +
𝑘2

2
1 − 𝜏

To utilize the guidance law, the two constants of the 
above equation (𝑎⊥0 and 𝑘2) must be determined 

through initial and/or final conditions

We start with the definition of 𝑎⊥ and multiply by 𝑇

Eq. SG-34 −𝑎⊥= 𝑉𝑀 𝑇 𝛿′ + 𝑉𝑀 𝛿 = 𝑉𝑀
𝑑

𝑑𝑇
𝑇 𝛿

Integrating Eq. SG-34 yields:

Eq. SG-35 𝑉𝑀 𝑇0׬ 𝛿0
0

𝑑(𝑇 𝛿) = 𝑇0׬−
0
𝑎⊥ 𝑇 𝑑𝑇

Eq. SG-36 −
𝑉𝑀𝛿0

𝑇0
= 0׬

1
𝑎⊥ 𝜏 𝑑𝜏



Solving for Constants 𝒂⊥𝟎 and 𝒌𝟐
OG to a PIP with a Shaping Constraint

❑ For simplicity, one can define 

𝐶1 = −
𝑉𝑀𝛿0

𝑇0

❑ The setting of the constant to the temporary 
variable 𝐶1 will allow for clearer computations 
as the value of the constants 𝑎⊥0 and 𝑘2 is 

determined
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Eq. SG-36 can be solved for by substituting Eq. SG-33 for 
𝑎⊥

Eq. SG-37 −
𝑉𝑀𝛿0

𝑇0
= 0׬

1
𝑎⊥0 𝜏 +

𝑘2

2
1 − 𝜏 𝜏 𝑑𝜏

Through simple integration we arrive at the following

Eq. SG-38 𝐶1 =
𝑎⊥0
3
+

𝑘2

2

1

2
−

1

3

or

Eq. SG-39 3𝐶1 = 𝑎⊥0 +
𝑘2

4

Next, a second equation is needed to solve for the two 
constants. The second equation is procured from the 
shaping constraint



Solving for Constants 𝒂⊥𝟎 and 𝒌𝟐
OG to a PIP with a Shaping Constraint

❑ For simplicity, one can define 

𝐶2 =
𝑉𝑀 𝛾𝑓 −𝛾0

𝑇0

❑ The setting of the constant to the temporary 
variable 𝐶2 will allow for clearer computations 
as the value of the constants 𝑎⊥0 and 𝑘2 is 

determined
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Using the second constraint as a starting point

Eq. SG-40 𝑉𝑀 𝛾𝑓 − 𝛾0 = 0׬
𝑇0 𝑎⊥ 𝑑𝑇 = 𝑇0 0׬

1
𝑎⊥ 𝑑𝜏

Using the substitution of the constant 𝐴2 and the 
definition of 𝑎⊥

Eq. SG-41 𝐶2 = 0׬
1
𝑎⊥ 𝑑𝜏

Eq. SG-42 𝐶2 = 0׬
1
𝑎⊥0 𝜏 +

𝑘2

2
1 − 𝜏 𝑑𝜏

Once again, integrating provides the second equation 
required to solve for the constants

Eq. SG-43 𝐶2 =
𝑎⊥0
2
+

𝑘2

2
1 −

1

2

Eq. SG-44 2 𝐶2 = 𝑎⊥0 +
𝑘2

2



Closed Form Solution for 𝒂⊥
OG to a PIP with a Shaping Constraint

❑ Remember in Eq. SG-33, a closed form solution 
to 𝑎⊥ was defined in terms of the constants 𝑎⊥0
and 𝑘2. It is repeated here for convenience

𝑎⊥ = 𝑎⊥0 𝜏 +
𝑘2

2
1 − 𝜏
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Eq. SG-39 and Eq. SG-44  describe the two unknowns in 
terms of constants 𝐶1 and 𝐶2. Solving for the two 
unknowns

Eq. SG-45
𝑘2

2
= −6 𝐶1 + 4 𝐶2

Eq. SG-46 𝑎⊥0 = 6 𝐶1 − 2 𝐶2

These two equations can be substituted into Eq. SG-33, 
and recalling the definitions of 𝐶1 and 𝐶2 provides the 
closed form solution for the acceleration commands

Eq. SG-47

𝒂⊥ = −𝟔
𝑽𝑴 𝜹𝟎
𝑻𝟎

− 𝟐
𝑽𝑴 𝜸𝒇 − 𝜸𝟎

𝑻𝟎
𝝉 + 𝟔

𝑽𝑴 𝜹𝟎
𝑻𝟎

+ 𝟒
𝑽𝑴 𝜸𝒇 − 𝜸𝟎

𝑻𝟎
𝟏 − 𝝉



Instantaneous 𝒂⊥
OG to a PIP with a Shaping Constraint

❑ At any instant, the commanded acceleration, 𝑎⊥, can be found by setting 𝜏 = 1

𝒂⊥ = −𝟔
𝑽𝑴 𝜹𝟎
𝑻𝟎

− 𝟐
𝑽𝑴 𝜸𝒇 − 𝜸𝟎

𝑻𝟎

❑ One can see that there are two components to the acceleration command

➢ Heading error, 𝛿0

➢ Flight path angle delta, 𝛾𝑓 − 𝛾0

❑ At intercept (i.e. 𝑇 = 0), both heading error and flight path angle delta must be zero or the 
commanded acceleration is infinite
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Odds and Ends
OG to a PIP with a Shaping Constraint

❑ The optimal solution for guidance to a PIP with shaping constrain has been defined for a two 
dimensional problem

𝒂⊥ = −𝟔
𝑽𝑴 𝜹𝟎

𝑻𝟎
− 𝟐

𝑽𝑴 𝜸𝒇 −𝜸𝟎

𝑻𝟎

❑ There are two planes in which the acceleration commands must be generated which are 
defined uniquely

➢ 𝛿0 is defined in the plane along the missile to intercept point vector

➢ 𝛾𝑓 − 𝛾0 is defined by the unit vector 𝛾𝑓 and the unit vector of 𝑉𝑀

❑ For the general 3-D case, one must be careful during this derivation as the angular 
relationship of 𝜎 = 𝛿 − 𝛾 is no longer true unless both 𝛿 and 𝛾𝑓 − 𝛾0 are defined to be in 

the sample plane

𝝈 ≠ 𝜹 − 𝜸
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Characteristics OG to a PIP with a 
Shaping Constraint as a Function of 𝝉

❑ The state variables, 𝛿 and 𝛾, and the position values, 𝑥 and 𝑧, are defined as follows:

𝛿 = 𝛿0 4𝜏2 − 3𝜏 + 2 𝛾𝑓 − 𝛾0 𝜏2 − 𝜏

𝛾 = 𝛾0 − 6 𝛿0𝜏 1 − 𝜏 + 𝛾𝑓 − 𝛾0 1 − 3𝜏 1 − 𝜏

𝑧 = 𝑧𝑓 + 𝑅 𝛿 − 𝛾
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑏𝑦 𝑅0

തz =
𝑧

𝑅0
≈ −𝜎0 + 𝜏 𝛿 − 𝛾

𝑥 = 𝑥𝑓 − 𝑅
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑏𝑦 𝑅0

തx =
𝑥

𝑅0
≈ 1 − 𝜏
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𝜹, 𝜸, and 𝒂⊥
OG to PIP with Shaping Constraint

❑ Due to the form of the control, it is not 
easy to develop a normalized function 
which describes the trajectory 
independent of scenario. Therefore, we 
evaluate the following scenario as an 
example:

➢ Initial cond.: 𝛿0 = 50°, 𝛾0 = 70°

➢ Final cond.: 𝛿𝑓 = 0°, 𝛾𝑓 = 20°
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Further Studies
OG to PIP with Shaping Constraint

❑ Just as we introduced a late maneuver penalty on the OG to a PIP problem, the same can be 
done with this problem

𝐽 = 𝑉𝑀
2 0׬

𝑇0 𝛿′+
𝛿

𝑇

2

𝑇𝑝
𝑑𝑇

❑ Recognizing the same constraints

➢ Hit the target at 𝑡 = 𝑇0 (or 𝑇 = 0)

➢ Intercept the target with a prescribed flight path angle of 𝛾𝑓

❑ Develop the optimal guidance law to a PIP with a shaping constraint that considers late 
maneuver penalty
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General Form of 𝜹, 𝜸, and 𝒂⊥
OG to PIP with Shaping Constraint

Shorthand Notation

❑ Guidance gains

𝜑 =

𝑝 + 2 𝑝 + 3

𝑝 + 1 𝑝 + 2

𝑝 + 1 𝑝 + 2 𝑝 + 3

𝑝 + 1 𝑝 + 2 𝑝 + 2

❑ Error Terms

𝜀 =
𝛿0

𝛾𝑓 − 𝛾0

❑ Remember, 𝐾 = 𝑝 + 3
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The general form of the control (𝐴⊥), and state variables (𝛿, 𝛾) for 
any maneuver penalty (𝑝), over the region in which  𝑝 ≻ −1 is as 
follows:

𝐴⊥
𝑉𝑀/𝑇0

= −𝜑1 𝜀1 − 𝜑2 𝜀2 𝜏𝑝+1 + 𝜑3 𝜀1 + 𝜑4 𝜀2 1 − 𝜏 𝜏𝑝

𝛿 =෍

𝑗=1

2

𝜀𝑗
𝜏𝑝+2

𝑝 + 3
𝜑𝑗 + 𝜑𝑗+2 −

𝜏𝑝+1

𝑝 + 2
𝜑𝑗+2

𝛾 = 𝛾0 + ෍

𝑗=1

2

𝜀𝑗
𝜑𝑗+2
𝑝 + 1

1 − 𝜏𝑝+1 −
𝜑𝑗 + 𝜑𝑗+2
𝑝 + 2

1 − 𝜏𝑝+2
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