--- title: ECE09426 Lecture 6 Homework author: Aidan Sharpe date: March 3rd, 2025 geometry: margin=1in --- # Required PDMS for a HAW System ```python import numpy as np import matplotlib.pyplot as plt P_TX = 7E3 LOSS_TX = 10**(5/10) GAIN_TX = 10**(35/10) MAX_RANGE = 60E3 TARGET_AREA = 1 def PDMS(tx_power, tx_gain, radar_cross_section, tx_loss, dist_source_target, dist_target_missile): tx_p_gain = (tx_power*tx_gain) / (4*np.pi*tx_loss) p_ref = radar_cross_section / (dist_source_target**2) p_rx = 1 / (4*np.pi*dist_target_missile**2) return tx_p_gain * p_ref * p_rx def main(): pd_min = PDMS(P_TX, GAIN_TX, TARGET_AREA, LOSS_TX, MAX_RANGE, MAX_RANGE) pd_min_db = 10*np.log10(pd_min) print(pd_min_db) ``` PDMS required = -144.6592668956451 # PDMS for a non-HAW System ```python import numpy as np import matplotlib.pyplot as plt MAX_RANGE = 60E3 def main(): illumination_percent = np.arange(0.1, 1.1, 0.1) max_range = MAX_RANGE/illumination_percent plt.plot(100*illumination_percent, max_range) plt.xlabel("Illumination Percent") plt.ylabel("Max Range [km]") plt.show() ``` ![](./illumination-percent-range.png) # Rocket Motor Math ```python import numpy as np import matplotlib.pyplot as plt g = 9.81 I_SP = 250 BURN_TIME = 14 INITIAL_MASS = 1200 FINAL_MASS = 700 def v_burnout(I_sp, t_burn, w_launch, w_burnout): return I_sp * g*np.log(w_launch/w_burnout) def main(): t = np.linspace(0, BURN_TIME, 500) m_propellant = INITIAL_MASS - FINAL_MASS w_propellant_0 = g*m_propellant w_rocket = g*FINAL_MASS weight_flow_rate = w_propellant_0/BURN_TIME v_exit = I_sp*g w_propellant = w_propellant_0 - weight_flow_rate*t thrust = weight_flow_rate*v_exit*g w_total = w_rocket + w_propellant acceleration_g = thrust/w_total plt.plot(t, acceleration_g) plt.show() if __name__ == "__main__": main() ``` ![](./timed_burn.png)