\hypertarget{chapter-2}{% \section{Chapter 2}\label{chapter-2}} \hypertarget{maxwells-equations-in-differential-form}{% \subsection{Maxwell's Equations in Differential Form}\label{maxwells-equations-in-differential-form}} \[\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0} \xleftrightarrow{\text{divergence}} \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\] \[\int \vec{B} \cdot d\vec{s} = 0 \xleftrightarrow{} \nabla \cdot \vec{B} = 0\] \[\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} \xleftrightarrow{\text{stokes}} \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}\] \[\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) \xleftrightarrow{} \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\] Before Maxwell (only true for magnetostatics): \[\nabla \times \vec{B} = \mu_0\vec{J}\] \[\nabla \cdot (\nabla \times \vec{B}) = \mu_0(\nabla \cdot \vec{J})\] \[\nabla \cdot \vec{J} = 0\] For changing magnetic fields: \[\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v\] \[\nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho_v = 0\] \hypertarget{example-2.1}{% \subsubsection{Example 2.1}\label{example-2.1}} \[\vec{J} = e^{-x^2}\hat{x}\] Find the time rate of change of charge densisty at \(x=1\): \[\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v\] \[\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J} = -\frac{d}{dx}e^{-x^2} = 2xe^{-x^2}\] \[\therefore 2 e^{-1}\] \hypertarget{example-2.2}{% \subsubsection{Example 2.2}\label{example-2.2}} For some spherical current density: \[\vec{J} = \frac{J_0 e^{-t/\tau}}{\rho}\hat{\rho}\] Find the total current that leaves the surface of radius, \(t = \tau\): \[I = \int \vec{J} \cdot d\vec{s} = 4\pi a^2 \left(\frac{J_0 e^{-t/\tau}}{a}\right)\] \[I = 4\pi a J_0 e^{-1}\] Find \(\rho_v(\rho, t)\): \[\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}(\rho^2 J)\] Plug in for \(J\): \[\nabla \cdot \vec{J} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}\left(\rho^2 \frac{J_0 e^{-t/\tau}}{\rho}\right) = \frac{J_0}{\rho^2} e^{-t/\tau} = -\frac{\partial}{\partial t} \rho_v\] Solve for \(\rho_v\): \[\rho_v = \int -\frac{J_0}{\rho^2}e^{-t/\tau} dt\] \[\rho_v = \frac{J_0}{\rho^2} e^{-t/\tau} \tau\] \hypertarget{wave-propagation}{% \subsection{Wave Propagation}\label{wave-propagation}} \[\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}\] \[\nabla \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \frac{\partial}{\partial t} \vec{E})\] \[\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0}\] \[\nabla \cdot \vec{B} = 0\] Take the curl of the first equation: \[\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t}(\nabla \times \vec{B})\] \[\nabla (\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t}(\nabla \times \vec{B})\] Substitute the second equation into the one directly above: \[\nabla(\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t} \left( \mu_0 \vec{J} + \mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} \right)\] \hypertarget{homogenious-vector-wave-for-vece-fields}{% \paragraph{\texorpdfstring{Homogenious vector wave for \(\vec{E}\)-fields}{Homogenious vector wave for \textbackslash vec\{E\}-fields}}\label{homogenious-vector-wave-for-vece-fields}} Lets say we are considering wave propagation in a source free region (\(\rho_v =0\)). \[\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0} =0\] \[\vec{J} = -\frac{\partial}{\partial t} \rho_v = 0\] Now we have: \[-\nabla^2\vec{E} = -\mu_0\varepsilon_0 \frac{\partial}{\partial t} \vec{E}\] \[\therefore \nabla^2\vec{E}-\mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} = 0\] \hypertarget{homogeneous-vector-wave-for-vecb-fields}{% \paragraph{\texorpdfstring{Homogeneous vector wave for \(\vec{B}\)-fields}{Homogeneous vector wave for \textbackslash vec\{B\}-fields}}\label{homogeneous-vector-wave-for-vecb-fields}} \[\nabla^2\vec{B} - \mu_0\varepsilon_0 \frac{\partial^2}{\partial t^2}\vec{B} = 0\] \hypertarget{phasor-representations}{% \subsubsection{Phasor representations}\label{phasor-representations}} In general, all fields and their sources vary as a function of position and time. If the time variations are sinusoidal, with angular frequency, \(\omega\), then each of their quantities can be represented by a time independent phasor. \[\vec{E}(x,y,z,t) = \Re\{\vec{E}(x,y,z)e^{j \omega t}\}\] \[\vec{E}(r,t) = \Re\{\hat{E}(r) e^{j \omega t}\}\] \[\vec{B}(r,t) = \Re\{\hat{B}(r) e^{j \omega t}\}\] \(\hat{E}\) and \(\hat{B}\) are the complex time variations in vector form. (\(\hat{E} = \hat{\vec{E}}\)) . If \(\hat{E}(r) = E_0 e^{j \theta}\), \[\vec{E}(r, t) = \Re\{E_0 e^{j \theta} e^{j \omega t}\} = E_0\cos(\omega t + \theta)\] Consider a plane wave in the x-direction only (\(E_y = E_z = 0\)), and does ont vary the x or y direction (\(\frac{\partial}{\partial x}\hat{E} = \frac{\partial}{\partial y}\hat{E} = 0\)). Assume free space for propagation (\(\hat{J} = \hat{\rho}_v = 0\)). \[\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \hat{E}_x & \hat{E}_y & \hat{E}_z \end{vmatrix} = -j\omega (\hat{B}_x\hat{x} + \hat{B}_y \hat{y} + \hat{B}_z \hat{z}\] \[\therefore \begin{Bmatrix} -\frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_x \\ \frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_y \\ 0 = -j\omega\hat{B}_z \end{Bmatrix}\] Similarly, Ampere's Law: \[\begin{Bmatrix} -\frac{\partial \hat{B}_y}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_x \\ \frac{\partial \hat{B}_x}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_y \\ 0 = j\omega\varepsilon_0\mu_0\hat{E}_z\end{Bmatrix}\] Therefore, \(B_x\) and \(E_y\) are related to each other. \(B_x\) acts as the source for generating \(E_y\), and \(E_y\) acts as the source for generating \(B_x\). Solving for \(\hat{E}_x\) and \(\hat{B}_y\): \[\frac{\partial^2 \hat{E}_x}{\partial z^2} = -j\omega\frac{\partial \hat{B}_y}{\partial z} = -\omega^2\mu_0\varepsilon_0\hat{E}_x\] \[\therefore \frac{\partial^2}{\partial z^2}\hat{E}_x + \mu_0\varepsilon_0\omega^2\hat{E}_x = 0\] The general solution: \[\hat{E}_x = \hat{C}_1 e^{-j \beta_0 z} + \hat{C}_2 e^{j \beta_0 z}\] Where \(\hat{C}_1\) and \(\hat{C}_2\) are complex. \[\therefore \hat{E}_x = \hat{E}_m^+ e^{-j \beta_0 z} + \hat{E}_m^- e^{j \beta_0 z}\] Where \(E_m^+\) and \(E_m^-\) are wave amplitudes (volts per meter). \hypertarget{the-phase-constant}{% \subparagraph{The phase constant:}\label{the-phase-constant}} \[\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi}{\lambda} = \frac{2\pi f}{C}\] \hypertarget{real-time-form-of-the-solution}{% \paragraph{Real time form of the solution:}\label{real-time-form-of-the-solution}} \[E_x(z,t) = \Re\{\hat{E}_x e^{j \omega t}\} = \Re\{E_m^+ e^{j(\omega t - \beta_0 z)} + E_m^- e^{j(\omega t + \beta_0 z)}\}\] \[\therefore E_x(z,t) = E_m^+ \cos(\omega t - \beta_0 z) + E_m^- \cos(\omega t + \beta_0 z)\] If \(E_m^+ = E_m^-\), the magnitude and direction is \(E_0\). \[\therefore E_x(z,t) = E_0\cos(\omega t \pm \beta_0 z)\] Where: \(\omega = 2\pi f\) \(v_0\) is the phase velocity \hypertarget{the-phase-velocity}{% \subparagraph{The phase velocity}\label{the-phase-velocity}} \[v_0 = \frac{1}{\sqrt{\mu \varepsilon}}\] In a vacuum: \[v_0 = c\] \hypertarget{also}{% \paragraph{Also}\label{also}} \[\hat{B}_y = \frac{\hat{E}_x}{c}\] Common \(\vec{E}\) and \(\vec{B}\) field ratio is: \[\mu_0 \hat{H}_y = \frac{\hat{E}_x}{c}\] \[\therefore \frac{\hat{E}_x}{\hat{H}_y} = \mu_0 c = \frac{\mu_0}{\sqrt{\mu_0 \varepsilon_0}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 \approx 120\pi = 377\Omega\] Where \(\eta_0\) is the intrinsic wave impedance. \[\therefore \hat{E}_x = \hat{H}_y \eta_0\] \[\therefore \hat{H}_y = \frac{\hat{E}_x}{\eta_0}\] Therefore, both \(\vec{H}\) and \(\vec{E}\) fields are in phase. In general: \[\hat{H} = \frac{\hat{k}}{\eta_0} \times \hat{E}\] \[\hat{E} = -\eta_0 \hat{k} \times \hat{H}\] \hypertarget{example-2.3}{% \subsubsection{Example 2.3}\label{example-2.3}} \[\vec{E} = 50\cos(10^8t + \beta_0 x)\hat{y} \text{[v/m]}\] \[E_y = E_0\cos(\omega t + \beta x)\] \(E_y\) propagates in the \(-\hat{x}\) direction. \[\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{\omega}{c} = \frac{10^8}{3 \times 10^8} = \frac{1}{3}\] What is the time it takes to travel a distance of \(\frac{\lambda}{2}\)? \[\omega = 2\pi f = \frac{2\pi}{T}\] \[T = \frac{2\pi}{\omega}\] \[\therefore t_{\lambda/2} = \frac{T}{2} = \frac{\pi}{\omega} = \frac{\pi}{10^8} \approx 31.42\text{[ns]}\] The refractive index of a medium is given by the ratio of \(c\) and \(v_p\): \[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}\] \[v_p = \frac{1}{\sqrt{\mu \varepsilon}}\] \[n = \frac{c}{v_p} = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \sqrt{\mu_r \varepsilon_r}\] For a non-magnetic material: \[\mu_r \approx 1\] \[\therefore n = \sqrt{\varepsilon_r}\] \hypertarget{polarization}{% \subsection{Polarization}\label{polarization}} \[\begin{rcases} \nabla \cdot \vec{E} = {\rho \over \varepsilon_0} \\ \nabla \cdot \vec{B} = 0 \end{rcases} \text{Gauss}\] \[\begin{rcases} \nabla \times \vec{E} = -{\partial \over \partial t} \vec{B} \end{rcases} \text{Faraday}\] \[\begin{rcases} \nabla \times B = \mu_0 \vec{J} + \mu_0 \varepsilon_0{\partial \over \partial t}\vec{E} \end{rcases} \text{Ampere}\] Polarization of a uniform plane wave describes the shape and olcus of the tip of the \(\vec{E}\)-field vector in the plane orthoganal to the direction of propagation. There are two pairs of \(\vec{E}\) and \(\vec{B}\) fields (\(\hat{E}_x\), \(\hat{H}_y\)) and (\(\hat{E}_y\), \(\hat{H}_x\)). When both pairs are present, we can evaluate polarization of plane waves. The \(\vec{E}\)-field has components in the \(\hat{x}\) and \(\hat{y}\) directions and travels in \(\hat{z}\). \[\hat{E} = (\hat{E}_x \hat{x} + \hat{E}_y \hat{y})e^{-j \beta z}\] \[\hat{E}_x = \lvert \hat{E}_{x_0} \rvert e^{-j \beta a}\] \[\hat{E}_y = \lvert \hat{E}_{y_0} \rvert e^{-j \beta b}\] \hypertarget{locus}{% \paragraph{Locus}\label{locus}} The shape the tip of the \(\vec{E}\)-field vector traces out while in motion. \hypertarget{phase}{% \paragraph{Phase}\label{phase}} Typically defined relative to a reference point such as \(z=0\) or \(t=0\) or some combination. \hypertarget{polarization-characteristics}{% \subsubsection{Polarization Characteristics}\label{polarization-characteristics}} \hypertarget{linear-polarization}{% \paragraph{Linear polarization}\label{linear-polarization}} \(\hat{E}_x\) and \(\hat{E}_y\) have the same phase angle: \(a = b\), so the x and y components of the \(\vec{E}\)-field will be in phase. \[\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) e^{-j( \beta z - a)}\] In real time: \[\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t - \beta z + a)\] As the wave continues to propagate in the \(\hat{z}\) direction, the \(\vec{E}\)-field vector maintains its direction with angle, \(\theta\), with respect to the y-axis. \[\tan(\theta) = {\lvert \hat{E}_x \rvert \over \vert \hat{E}_y \rvert}\] When \(z=0\), the \(\vec{E}\) field is given by: \[\vec{E}(0, t) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t + a)\] \[\vec{E}(0, 0) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(a)\] \hypertarget{elliptical-polarization}{% \paragraph{Elliptical Polarization}\label{elliptical-polarization}} \(\hat{E}_x\) and \(\hat{E}_y\) have different phase angles. \(\vec{E}\) is no longer in one plate. \[\hat{E} = \hat{x} \lvert \hat{E}_x \rvert e^{j (a - \beta z)} + \hat{y} \lvert \hat{E}_y \rvert e^{j(b - \beta z)}\] Where: \(E_x = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)\) \(E_y = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)\) If \(a=0\) and \(b = {\pi \over 2}\): \[\vec{E}_x(z,t) = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)\] \[\vec{E}_y(z,t) = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)\] \hypertarget{circular-polarization}{% \paragraph{Circular Polarization}\label{circular-polarization}} \(\hat{E}_x\) and \(\hat{E}_y\) have the same magnitude with a phase angle difference of \({\pi \over 2}\). \hypertarget{example}{% \subsubsection{Example}\label{example}} Determine the real-valued \(\vec{E}\)-field. \[\hat{E}(z) = -3j\hat{x} e^{-j\beta z}\] \[\vec{E}(z, t) = -3j\hat{x} e^{-j \beta z} e^{j\omega t}\] \[3 \hat{x} e^{-j \beta z} e^{j \omega t} e^{-\pi \over 2}\] \[3 \cos\left(\omega t- \beta z - {\pi \over 2}\right)\] \hypertarget{example-1}{% \subsubsection{Example}\label{example-1}} What are \(E_x\) and \(E_y\) \[\hat{E}(z) = (3\hat{x} + 4\hat{y})e^{j\beta z}\] \[\vec{E}(z, t) = (3\hat{x} + 4\hat{y})e^{j\beta z}e^{j\omega t}\] \[E_x = 3\cos(\omega t + \beta z)\] \[E_y = 4\cos(\omega t + \beta z)\] \hypertarget{example-2}{% \subsubsection{Example}\label{example-2}} \[\hat{E}(z) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}\] \[\hat{E}(z, t) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}e^{j\omega t}\] \[E_x = 4\cos(\omega t - \beta z + \pi)\] \[E_y = 3\cos(\omega t - \beta z)\] \hypertarget{non-sinusoidal-waves}{% \subsection{Non-Sinusoidal Waves}\label{non-sinusoidal-waves}} Analytical solution of a 1-D traveling wave. \[{\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0\] \hypertarget{dalemberts-solution}{% \subsubsection{D'Alemberts Solution}\label{dalemberts-solution}} \[\vec{E}(z, t) = E(z - ct) + E'(z + ct)\] Show that the function, \(F(z - ct) = F_0 e^{-(z+ct)^2}\) is a solution of the wave equation. Let \(\gamma = z - ct\), and \({\partial \gamma \over \partial z} = 1\): \[F(z-ct) = F_0 e^{-\gamma^2}\] \[F'(z + ct) = 0\] \[{\partial F \over \partial z} = {\partial F \over \partial \gamma} {\partial \gamma \over \partial z} = F_0 e^{-\gamma^2}(-2\gamma)\] \[{\partial^2 F \over \partial z^2} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)\] \[G = \left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)\] Don't forget chain rule: \[{\partial G \over \partial \gamma}{\partial \gamma \over \partial z} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right){\partial \gamma \over \partial z}\] \[{\partial \over \partial \gamma} - 2\gamma F_0 e^{-\gamma^2} = -2F_0 {\partial \over \partial \gamma} \gamma e^{-\gamma^2}\] By product rule: \[-2F_0 (\gamma (-2\gamma e^{-\gamma^2}) + e^{-\gamma^2})\] \[F_0 (4\gamma^2 e^{-\gamma^2} - 2e^{-\gamma^2}) = F_0(-2 + 4\gamma^2)e^{-\gamma^2}\] \[={\partial^2 \over \partial \gamma^2}F \left({\partial \gamma \over \partial z}\right)^2\] \[\therefore {\partial^2 \over \partial t^2}F = {\partial^2 F \over \partial \gamma^2} \left({\partial \gamma \over \partial t}\right)^2 = F_0(-2 + 4\gamma^2)e^{-\gamma^2}(C^2)\] This solution satisfies: \[{\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0\]