# Homework 6 - Aidan Sharpe ## Exercise 1 Consider a solenoid containing two coaxial magnetic rods of radii $a$ and $b$ and permeabilities $\mu_1 = 2\mu_0$ and $\mu_2 = 3\mu_0$. If the solenoid has $n$ turns every $d$ meters along the axis and carries a steady current, $I$. ### a) Find $\vec{H}$ inside the first rod, between the first and second rod, and outside the second rod. For a solenoid regardless of magnetic materials: $$\vec{H} = {I n \over d}\hat{z}$$ So for all regions: $$\vec{H} = {I n \over d}\hat{z}$$ ### b) Find $\vec{B}$ inside the three regions. $\vec{B}$ relies on magnetic material properties: $$\vec{B} = \mu \vec{H}$$ Therefore: $$\vec{B} = \begin{cases} 2\mu_0\vec{H} & \text{In region 1}\\ 3\mu_0\vec{H} & \text{In region 2}\\ \mu_0\vec{H} & \text{In region 3} \end{cases}$$ ### c) $\vec{M}$ in each region: By definition: $$\vec{M} = \chi_m \vec{H}$$ $$\chi_m = \mu_r - 1$$ Therefore: $$\vec{M} = \begin{cases} \vec{H} & \text{In region 1} \\ 2\vec{H} & \text{In region 2} \\ 0 & \text{In region 3} \end{cases}$$ ### d) $\vec{J}$ in each region: By definition: $$\vec{J}_m = \nabla \times \vec{M}$$ Since $\vec{M}$ is both conservative and solenoidal inside the solenoid, for all three regions: $$\vec{J}_m = 0$$ ## Exercise 2 In a nonmagnetic medium: $$E = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{z}$$ ### a) Find $\varepsilon_r$ and $\eta$: The general form: $$\vec{E}(x,t) = E_0\cos(\omega t -\beta x)\hat{z}$$ $$\beta = \omega \sqrt{\mu \varepsilon} = 0.8$$ $$0.8 = 2\pi\times10^7 \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}$$ $${{\left(0.8 \over 2\pi\times10^7\right)^2} \over \mu_0 \varepsilon_0} = \varepsilon_r$$ $$\boxed{\varepsilon_r = 14.566}$$ $$\eta = \sqrt{\mu \over \varepsilon} = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r}$$ $$\boxed{\eta = 98.275}$$ ### b) Find the average poynting vector $$\vec{P}_\text{avg} = {E_0^2 \over 2 \eta}\hat{x} = {4^2 \over 2(98.275)}$$ $$\vec{P}_\text{avg} = 0.081$$ ## Exercise 3 $$E = 3\sin(2\pi\times10^7t - 0.4\pi x)\hat{y} + 4\sin(2\pi\times10^7t - 0.4\pi x)\hat{z}$$ ### b) $$\varepsilon_r = {\left({\beta \over \omega}\right)^2 \over \mu_0 \varepsilon_0} = {\left({0.4\pi\over 2\pi\times10^7}\right)^2 \over \mu_0 \varepsilon_0}$$ $$\boxed{\varepsilon_r = 35.941}$$ ### a) $$\lambda = {v_p \over f}$$ $$v_p = {1 \over \sqrt{\mu \varepsilon}} = {1 \over \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}} = 5\times10^7$$ $$f = {\omega \over 2\pi} = 10^7$$ $$\boxed{\lambda = 5\text{[m]}}$$ ### c) $$H = {E_0 \over \eta}\sin(\omega t - \beta x)\hat{z} + {E_0' \over \eta}\sin(\omega t - \beta x)\hat{y}$$ $$\eta = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r} = 62.85$$ $$\boxed{H = 0.0477\sin(2\pi\times10^7t - 0.4\pi x)\hat{z} + 0.0636\sin(2\pi\times10^7t -0.4\pi x)\hat{y}}$$ ## Exercise 4 Prove that: $$\hat{H}_y = - {\hat{E}_x \over \eta_0}$$ Starting with a genering electric plane wave in the $-\hat{z}$ direction: $$\vec{E}(z, t) = E_0 \cos(\omega t + \beta_0 z)\hat{x}$$ We will use Faraday's Law of Induction to convert a measure in the $\vec{E}$-field to a value for the $\vec{B}$-field: $$\nabla \times \vec{E} = -{\partial \over \partial t}\vec{B}$$ Converting from $\vec{B}$ to $\vec{H}$: $$\nabla \times \vec{E} = -\mu{\partial \over \partial t} \vec{H}$$ Assuming free space: $$\mu = \mu_0$$ This gives the final form for Faraday's Law: $$\nabla \times \vec{E} = -\mu_0 {\partial \over \partial t} \vec{H}$$ Evaluating the curl of $\vec{E}$: $$\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ \|\vec{E}\| & 0 & 0 \end{vmatrix} = {\partial \over \partial z}\|\vec{E}\|\hat{y} - {\partial \over \partial y}\|\vec{E}\|\hat{z}$$ Since $\vec{E}$ only varies with respect to $z$ and $t$ this can be rewritten as: $$\nabla \times \vec{E} = {\partial \over \partial{z}}\|\vec{E}\|\hat{y}$$ Evaluate the partial derivative: $$\nabla \times \vec{E} = -E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y}$$ Back to Faraday's Law: $$-E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y} = -\mu_0{\partial \over \partial t} \vec{H}$$ Divide out by $-\mu_0$: $${\partial \over \partial t}\vec{H} = {E_0 \beta_0 \over \mu_0}\sin(\omega t + \beta_0 z)\hat{y}$$ Expand out $\beta_0$: $$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0}$$ $${\partial \over \partial t}\vec{H} = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\sin(\omega t + \beta_0 z)dt\hat{y}$$ Integrate both sides with respect to $t$: $$\vec{H}(z,t) = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\int\sin(\omega t + \beta_0 z)dt \hat{y}$$ Evaluate the integral: $$\vec{H}(z,t) = -{E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0 \omega} \cos(\omega t + \beta_0 z)\hat{y}$$ Simplifying the fraction: $$\vec{H}(z,t) = -E_0 \sqrt{\varepsilon_0 \over \mu_0} \cos(\omega t + \beta_0 z)\hat{y}$$ Using the definition of $\eta_0$: $$\eta_0 = \sqrt{\mu_0 \over \varepsilon_0}$$ $$\vec{H}(z,t) = -{E_0 \over \eta_0}\cos(\omega t + \beta z)\hat{y}$$ $$\therefore \vec{H}(z,t) = -{\|\vec{E}(z,t)\| \over \eta_0}\hat{y}$$