# Homework 2 - Aidan Sharpe ## 1 Consider a long cylindrical wire of radius, $a$, carrying a current $I = I_0 \cos(\omega t)\hat{z}$. ### a) Write an expression for the magnetic field strength, $B$, outside the wire ($\rho > a$): By Ampere's Law: $$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$ For a closed loop of radius, $\rho$: $$\int \vec{B} \cdot d\vec{l} = B(2\pi\rho)$$ $$\therefore B(2\pi\rho) = \mu_0 I_{enc}$$ Since ($\rho > a$): $$I_{enc} = I = I_0 \cos(\omega t)$$ Recombining: $$B(2\pi\rho) = \mu_0 I_0 \cos(\omega t)$$ $$\therefore B = {\mu_0 I_0 \cos(\omega t) \over 2\pi\rho} \text{[T]}$$ ### b) Consider a rectangular loop a distance, $d$, from the wire with sidelengths $\alpha$ in the $\hat{x}$ direction, and $\beta$ in the $\hat{z}$ direction. #### i) Calculate the magnetic flux, $\Phi_B$, through the loop. By Gauss's Law for magnetism: $$\Phi_B = \iint \vec{B} \cdot d\vec{s}$$ Since the $\beta$ does not vary: $$\Phi_B = \beta \int\limits_{d}^{d+\alpha} {\mu_0 I_0 \cos(\omega t) \over 2\pi\rho} d\rho$$ Taking out constants: $$\Phi_B = {\beta \mu_0 I_0 \cos(\omega t) \over 2 \pi} \int\limits_d^{d+\alpha} {1 \over \rho}d\rho$$ Evaluate: $$\Phi_B = {\beta \mu_0 I_0 \cos(\omega t) \over 2\pi} \ln\left( {\lvert d + \alpha \rvert \over \lvert d \rvert} \right) \text{[Vs]}$$ #### ii) Find the induced EMF, $\cal{E}$: $$\mathcal{E} = -{d \over dt}\Phi_B$$ Plug in: $$\mathcal{E} = -{d \over dt} {\beta \mu_0 I_0 \cos(\omega t) \over 2\pi} \ln\left({\lvert d + \alpha \rvert \over \lvert d \rvert}\right)$$ Evaluate: $$\mathcal{E} = {\beta \mu_0 I_0 \sin(\omega t) \over 2\pi} \ln\left({\lvert d + \alpha \rvert \over \lvert d \rvert}\right) \text{[V]}$$ ## 2 A quarter circle loop of wire with inner radius, $a$, and outer radius, $b$, has current, $I$. Find the magnetic field strength at the center of the circle. By superposition: $$B = B_1 + B_2 + B_3 + B_4$$ By Ampere's law: $$\int \vec{B_1} \cdot d\vec{l} = \mu_0 I_{enc_1}$$ $$\int \vec{B_2} \cdot d\vec{l} = \mu_0 I_{enc_2}$$ $$\int \vec{B_3} \cdot d\vec{l} = \mu_0 I_{enc_3}$$ $$\int \vec{B_4} \cdot d\vec{l} = \mu_0 I_{enc_4}$$ Since the current in the first and third segments are either parallel or antiparallel: $$I_{enc_1} = 0$$ $$I_{enc_3} = 0$$ Since all of $I$ is enclosed in a loop from either segment two or four: $$I_{enc_2} = I_{enc_4} = I$$ Back to Ampere's Law: $$\int \vec{B_1} \cdot d\vec{l} = 0 \therefore B_1 = 0$$ $$\int \vec{B_2} \cdot d\vec{l} = \mu_0 I$$ $$\int \vec{B_3} \cdot d\vec{l} = 0 \therefore B_2 = 0$$ $$\int \vec{B_4} \cdot d\vec{l} = \mu_0 I$$ Determining $d\vec{l}$ for segments two and four: $$\int \vec{B_2} \cdot \vec{a}d\varphi = \mu_0 I$$ $$\int \vec{B_4} \cdot \vec{b}d\varphi = \mu_0 I$$ Determining the bounds: $$\int\limits_0^{\pi \over 2} \vec{B_2} \cdot \vec{a} d\varphi = \mu_0 I$$ $$\int\limits^0_{\pi \over 2} \vec{B_4} \cdot \vec{b} d\varphi = \mu_0 I$$ Evaluate: $$B_2 \left({\pi a \over 2}\right) = \mu_0 I$$ $$B_4 \left({-\pi b \over 2}\right) = \mu_0 I$$ Solve for $B$: $$B_2 = {2 \mu_0 I \over \pi a}$$ $$B_4 = -{2 \mu_0 I \over \pi b}$$ $$B = {2 \mu_0 I \over \pi a} - {2 \mu_0 I \over \pi b} = {2 \mu_0 I (a-b) \over \pi^2 a b} \text{[T]}$$ ## 3 Consider a cylinder of radius, $\rho_0 = 0.5\text{[m]}$, with a current density, $\vec{J} = 4.5e^{-2\rho}\hat{z}[A/m^2]$. By Ampere's Law: $$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$ For a radial current density: $$I_{enc} = \int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} J sdsd\varphi$$ Plugging in $J$ with $s$ as the integrating variable: $$I_{enc} = \int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} 4.5e^{-2s} sdsd\varphi$$ $$I_{enc} = 4.5\int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} e^{-2s} sdsd\varphi$$ $$I_{enc} = 4.5\int\limits_{0}^{2\pi} \left[ \left( {-\rho \over 2} - {1 \over 4}\right)e^{-2\rho} + {1 \over 4}\right]d\varphi$$ $$\therefore I_{enc} = {9 \pi e^{-2\rho}(e^{2\rho} -2\rho -1) \over 4}$$ Back to Ampere's Law: $$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$ For a circular loop: $$\int\limits_{0}^{2\pi} B\rho d\varphi = \mu_0 I_{enc}$$ $$B(2\pi\rho) = {9 \pi e^{-2\rho}(e^{2\rho} -2\rho -1) \over 4}$$ For $\rho \le \rho_0$ $$B = {9 e^{-2\rho}(e^{2\rho} -2\rho -1) \over 8\rho}$$ For $\rho \ge \rho_0$: $$I_{enc} = 4.5\int\limits_{0}^{2\pi} \int\limits_{0}^{\rho_0} e^{-2s} sdsd\varphi = {9 (e-2) \pi \over 4 e}$$ $$B(2\pi\rho) = {9(e-2)\pi \over 4e}$$ $$\therefore B = {9(e-2) \over 8e\rho}\text{[T]}$$ ## 4 Consider a solenoidal wire with $n$ coils per unit length. The core becomes magnetized when a current $I=10[A]$ is put into the wire coil, and this causes a bound current to flow around the cylindrical surface of the core as shown in the side view diagram. This bound core surface current density has magnitude, $J = 20n [A/m]$ $$B = B_s + B_c$$ $$B_s = \mu_0 I n = 10\mu_0n$$ Pretend the core current is just another solenoid: $$B_c = \mu_0 I n = 20\mu_0n$$ $$B = 30\mu_0 n \text{[T]}$$ ## 5 A satellite travelling at $5\text{[km/s]}$ enters a current filled curtain. From $t=1\text{[s]}$ to $t=3\text{[s]}$, the satellite's magnetometer increases from $-95\hat{x}\text{[nT]}$ to $95\hat{x}\text{[nT]}$. If the current flows in the $\hat{z}$ direction, find the current density, $J$. By Ampere's Law: $$\int \vec{B} \cdot d\vec{l} = \mu_0 \iint \vec{J} \cdot d\vec{s}$$ The total increase in $B$ is $195 \text{[nT]}$, so: $$195 \times 10^{-9} = \mu_0 \iint \vec{J} \cdot d\vec{s}$$ Plug in bounds to get the total distance through the curtain: $$195 \times 10^{-9} = \mu_0 \int\limits_{1}^{3} \int\limits_{0}^{-5000} J dvdt$$ $$195 \times 10^{-9} = -10000J\mu_0$$ $$J = {-195 \times 10^{-13} \over \mu_0} \text{[A/m}]$$