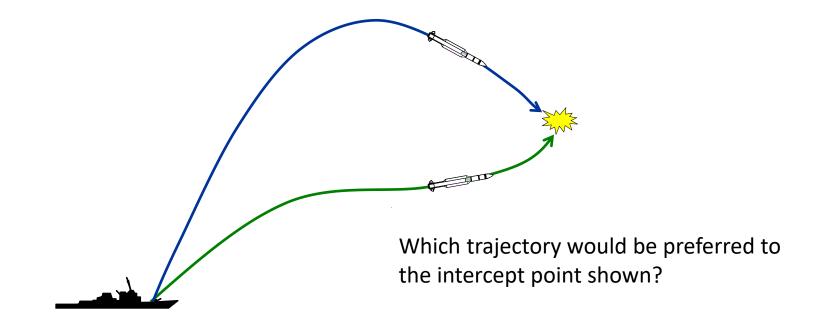


Trajectory Design

Gregg Bock

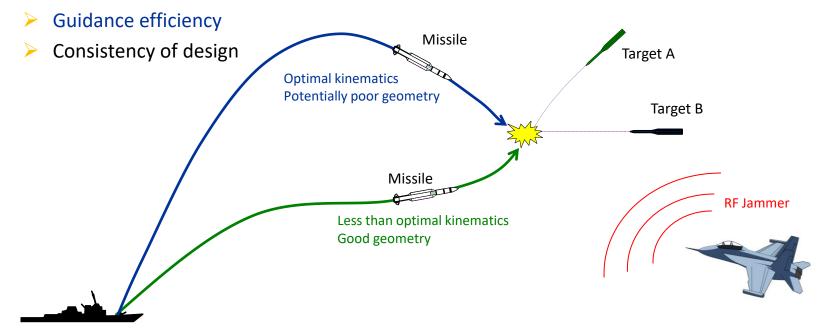
Copyright © 2015 by Lockheed Martin Corporation

- A trajectory describes the flight path of the interceptor as it moves from point A to point B
- The path in which an interceptor gets from point A to point B can be critical to the success of an engagement



□ The preferred trajectory can only be determined after considering

- Threat speed and orientation
- > RF environment



The Preferred Solution is Often an Imperfect Solution

Rowan University Trajectory Design Considerations 1

- A good trajectory design satisfies many diverse requirements while attempting to optimize multiple performance metrics
 - > The resultant balancing act is the heart of trajectory design
- Key parameters of a trajectory which are to be considered
 - Intercept range
 - Intercept velocity
 - > Time of flight
 - Intercept geometry

□ Extend intercept range to increase depth of fire (DOF)

- Creating more opportunities for launches against a given target
- Increase the area which can be covered by an interceptor
 - Defend a larger area
 - Defend more assets
- Push enemy forces further away from the launch platform
 - Enemy surveillance aircraft
 - Enemy electronic attack aircraft
 - Enemy launching platforms

Design trajectories that maximize the range of the interceptor

□ Increase maneuver capability during terminal guidance

Interceptor maneuverability is a function of Mach

$$n_{z} = \frac{N}{W} = \left(\frac{C_{N}}{\alpha}\right) \frac{\alpha \, Q \, S_{Ref}}{W} = \left(\frac{(0.7)(P)(C_{N\alpha})(\alpha) \, S_{Ref}}{W}\right) M^{2}$$

- Improve performance against outbound targets
- Reduce the interceptor to target line of sight (look angle)
 - Smaller look angle at equal time-to-go

Design trajectories that maximize the speed of the interceptor at intercept

Increase system reaction time

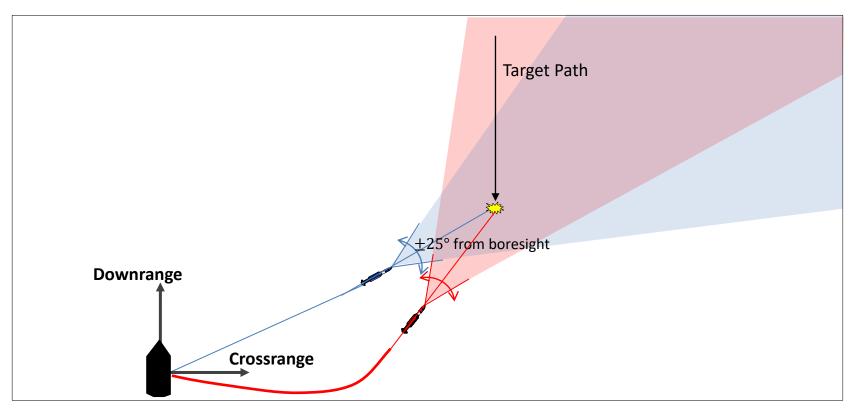
- Hit the target before it hits you
- Increase depth of fire
- Reduce system congestion
 - Reduced radar resources
 - Reduce illumination resources in home-all-the-way applications
 - Less time in the air means more missiles per hour can be fired and supported

Design Trajectories that Minimize Interceptor Time of Flight

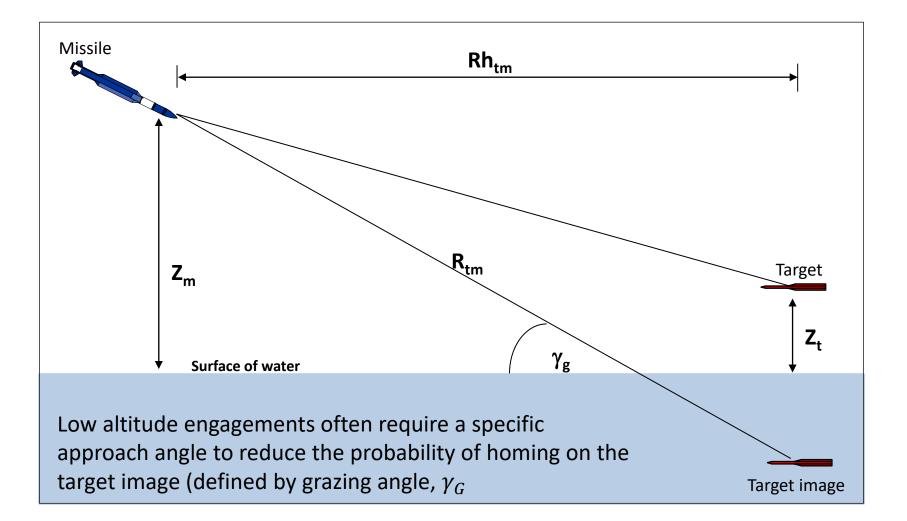
- Increase capability against crossing targets
 - Reduce look angle such that it is within seeker limits
- Increase probability of acquiring target at low altitude
 - Modify interceptor approach angle to reduce multipath effects
- Eliminate large maneuvers in terminal guidance
 - Small heading error at handover (target acquisition by interceptor seeker)
- Improve endgame performance
 - Increase fuze effectiveness by considering terminal crossing angle

Design Trajectories that Balance Many Scenario Specific Requirements

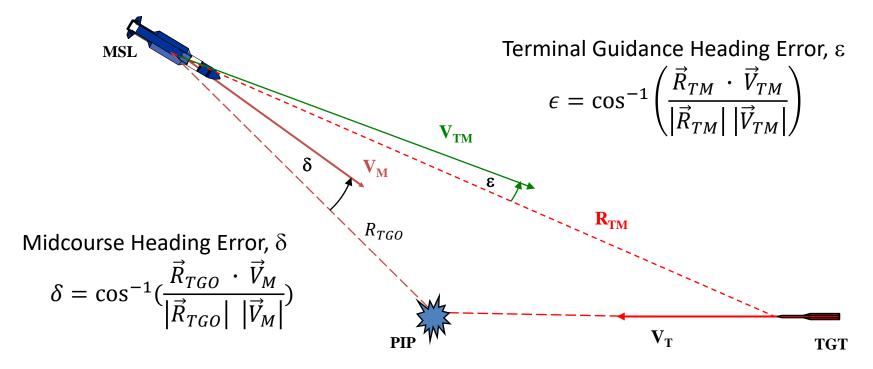
- The missile speed, target speed, and seeker gimbal limit define the crossing capability of a missile vs a given target
- Crossing capability can be expanded by introducing horizontal shaping to keep the target within the seeker gimbal limit during the period in which the missile searches for the target







- \Box The missile trajectory should allow for a small terminal heading error, ϵ
- Since $\delta \neq \epsilon$, one cannot assume a small midcourse heading error (heading error to an intercept point) will guarantee a small terminal guidance heading error



□ Factors that Influence Trajectory Design

- Drag Characteristics
- > Propulsion Profile
- > Missile Kinematics
- Missile/Mission Constraints
- These factors define
 - > The physical characteristics of the missile
 - > Limitations of the missile to which the trajectory must adhere

Optimal Trajectories are with Respect to a Specific Missile Type

From our aerodynamics lecture, we learned drag can be described in terms of force coefficients (C_A , C_N), and the interceptor kinematics at a given time

$$C_{\rm D}\cong C_A+C_N\,\alpha$$

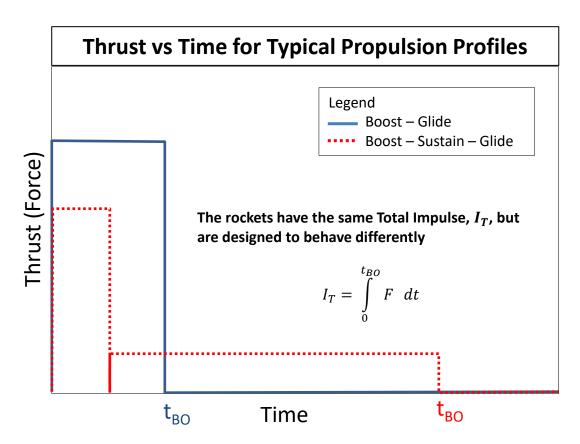
$$Drag \cong 0.7 \ P \ M^2 \ C_A + \frac{n_Z^2 W^2}{(0.7 \ P \ M^2 \ S_{Ref})^2 \ C_{N_{\alpha}}}$$

- If one was to minimize the total drag on the interceptor over the trajectory without constraints (or restrictions), the interceptor's final speed would be maximized
 - It should be noted that Mach and altitude are the dominant contributors to the computation of drag
 - > P, C_A , and $C_{N_{\alpha}}$ are all functions of Mach and/or altitude
- An optimal trajectory if often defined as a trajectory that maximizes the final speed
 - This is the same as minimizing the interceptor drag
 - > This is often simplified to develop tractable guidance solutions

Propulsion profiles describe the basic characteristics of a rocket. Terms used to describe the rocket propulsion are

- Boost A high thrust (typically short-duration) motor burn
- Sustain A low thrust (typically long-duration) motor burn
- Glide Rocket motor is off
- Some basic rocket profiles include
 - Boost Glide
 - Large velocity variation over the flight
 - Efficient use of rocket motor
 - Boost –Sustain Glide
 - Moderate velocity variation over flight
 - Boost Thrust Controlled Sustain
 - Control of interceptor velocity
 - Used by jets (ramjet, turbojet)

The illustration below shows the most common thrust vs time for the most common of the propulsion profiles



Turning Inertia

- Maneuver Drag
- > There is always a penalty for generating lift
- Gravity
 - > The interceptor must always fight gravity
 - > Requires a normal acceleration ($N_{Gravity} = K_{Gain} \cos(\gamma) G$) to negate the effect of gravity throughout flight
- Maneuver Capability (G-Limits)
 - Required for target maneuvers
 - Required to overcome noise in the guidance loop
 - Structural limitations (max maneuver limit)

High Lift Effectiveness (C_N/α) and High G-Limits Provides Good Guidance Kinematics

- □ The options for a trajectory shape can fall into 4 categories
 - Linear (short range)
 - Constant Mach (ramjet)
 - > Ballistic
 - Optimum lift to drag
- Most systems rely upon a combination of the four categories of trajectory shapes

- Even the simple concept of maximizing interceptor speed can result in a daunting mathematical problem
 - Rocket motor phases
 - Complexities of drag computations
 - Atmospheric considerations (altitude dependent quantities)
- For simplicity, a brute force method is often the preferred method for analyzing interceptor trajectory performance
 - Simulations are used to perform a parametric analysis of various trajectories, using the different guidance parameters, to the same intercept point
 - > Key metrics for each flight are analyzed
 - Desired guidance parameters are determined or,
 - Modifications are made to the guidance policy and the study must be repeated

- Trajectory shaping analysis was done using simplification and approximation techniques
- This provided some very practical (and clever) insight into the development of trajectory shapes
 - > Qualitative information is given but definitive performance values could not be obtained
 - By constraining the problem to a subset of conditions, the qualitative results would be used for the practical trajectory synthesis
- The law of energy conservation was the basis for most of this work

 $E_{I} = E_{D} + E_{R}$

> Where

- *E_I* = Energy Input into the System (rocket thrust)
- *E_D* = Energy Dissipated (drag)
- *E_R* = Energy Remaining (kinematic and potential energy)

Considering the Law of Energy Conservation in the missile^{*}, we have

 $\int Thust \ ds = \int Drag \ ds + \int \frac{W_G}{G} V \ dV + \int W_G \ dh + \int \frac{W_M}{G} V \ dV \ \int W_M \ dh$

- Where
 - *s* is the incremental path length of the trajectory
 - *V* is the interceptor velocity
 - *h* is the interceptor altitude
 - *W_G* is the weight of the rocket grain
 - W_M (constant) is the weight of the interceptor not including the W_G
- And the contributors are color coded as such
 - Rocket (slight dependence on altitude)
 - Drag (dependent on altitude and Mach)
 - Grain (dependent on altitude and velocity)
 - Remaining energy (dependent on altitude and velocity)

* From reference 1

Certain fundamental truths are critical for energy conservation

- All paths to a given altitude which results in a given velocity have the same remaining energy
- The criterion for comparing the merit of different trajectories to a given point is the velocity of the interceptor at that point
- The optimum trajectory maximizes the interceptor velocity at that point
 - For a given point, potential energy is constant
 - > Maximizing the velocity maximizes the kinetic energy as well as the remaining energy
- If we only allow trajectory variations after rocket burnout our energy equation is simplified

 $E_{Thrust} = E_{preburnout \, drag} + \int_{s_{burnout}}^{s_{final}} Drag \, ds + E_{Grain} + \frac{1}{2} \frac{W_M}{G} V_{final}^2 + W_M (h_{final} - h_{inital})$ Optimization criterion

- Only the drag integral and the remaining kinetic energy are variables
- The maximum final velocity is achieved by minimizing the drag energy integral

Evaluation of the drag integral gives the designer insight into how the missile is to behave

- Desired cruising altitude
- > Optimal turn
- The drag integral can be used to find the cruise altitude at which the drag is minimized i.e. the altitude at which the interceptor motion is most efficient
 - Long range, high-altitude missiles should be efficient at high altitude
 - Make sure your missile is physically well suited for its mission
- Our work can be used to find the optimal turn for the missile (lowest induced drag)
 - Allows for optimal course corrections
 - Useful for a missile that works with waypoints

We'll Investigate Optimal Cruising Altitudes and Optimal Turns

The drag energy integral can be used to provide an approximate optimum trajectory solution

$$\int Drag \, ds = \int \left(Q \, S_{ref} \, C_A \cos(\alpha) + n_z \, W_M \sin(\alpha) \right) ds$$

By definition:

$$\alpha = \frac{n_z \, W_M}{Q \, S_{Ref} \, C_{N\alpha}}$$

 \Box Using small angle approximations and the definition of α

$$\int Drag \, ds = \int \left(Q \, S_{Ref} \, C_A + \frac{n_Z^2 \, W_M^2}{Q \, S_{Ref} \, C_{N_\alpha}} \right) \, ds$$

□ We can treat C_A and $C_{N_{\alpha}}$ as (approximate) constants, and for a constant altitude, dynamic pressure is not a function of trajectory

 \Box We must minimize the integral with respect to Q and set it equal to zero

$$\frac{\partial}{\partial Q} \int Drag \, ds = \frac{\partial}{\partial Q} \int \left(Q \, S_{Ref} \, C_A + \frac{n_Z^2 \, W_M^2}{Q \, S_{Ref} \, C_{N\alpha}} \right) \, ds = 0$$
$$\int \frac{\partial}{\partial Q} \left(Q \, S_{Ref} \, C_A + \frac{n_Z^2 \, W_M^2}{Q \, S_{Ref} \, C_{N\alpha}} \right) \, ds = 0$$
$$\int \left(S_{Ref} \, C_A - \frac{n_Z^2 \, W_M^2}{Q^2 \, S_{Ref} \, C_{N\alpha}} \right) \, ds = 0$$

The function is minimized when the term inside the parenthesis vanishes

$$Q = \frac{n_z W_M}{S_{Ref}} \sqrt{C_A C_{N_\alpha}} \xrightarrow{\text{yields}} Q_{opt} = \frac{W_M}{S_{Ref}} \sqrt{C_A C_{N_\alpha}}$$

Since we desire to maintain a constant altitude,

•
$$n_z = 1$$

Remember n_z represents acceleration in units of "G"

Finally, we determine an approximation for the optimal cruise altitude

$$Q \cong 1481 \frac{P_h}{P_{sl}} M^2 \approx 1481 M^2 \exp\left(\frac{h}{23,000}\right)$$

- Where
 - *M* is Mach
 - $\frac{P_h}{P_{sl}}$ is the ratio of atmospheric pressure at altitude to pressure at sea level
 - $Q = \frac{\gamma}{2} P M^2 \cong 1481 \frac{P_h}{P_{sl}} M^2$ is a common approximation for dynamic pressure
 - $\circ \gamma$ is the specific heat ratio of air
 - P is ambient pressure (lbs/ft^2)
- Setting the above equal definition of $Q = Q_{opt}$ and solve for the optimal cruise altitude

$$h_{opt} \approx 23,000 \ln \left(\frac{W_M}{S_{Ref} M^2 \sqrt{C_A C_{N_{\alpha}}}} \right)$$

The Optimal Cruise Altitude is Only a Function of Mach

Starting with the drag integral with which we've assumed small angle approximations

$$\int Drag \, ds = \int \left(Q \, S_{Ref} \, C_A + \frac{n_Z^2 \, W_M^2}{Q \, S_{Ref} \, C_{N\alpha}} \right) \, ds$$

In order to develop the optimal level of maneuver, the path length ds needs to be expanded upon

$$ds = R \, d\gamma = \frac{V^2}{n_z \, G} \, d\gamma$$

> Where

- γ is the interceptor's heading
- *R* is the radius of the turn

Substituting the expression for *ds* into the drag equation yields

$$\int Drag \, ds = \int_{\gamma_0}^{\gamma_f} \left(\frac{Q \, S_{Ref} \, C_A}{n_z} + \frac{n_z \, W_M^2}{Q \, S_{Ref} \, C_{N_\alpha}} \right) \frac{V^2}{G} \, d\gamma$$

 $\hfill\square$ To determine the optimal acceleration, we take the partial of the previous equation with respect to n_z

$$\frac{\partial}{\partial n_z} \left[\int Drag \, ds \right] = \int_{\gamma_0}^{\gamma_f} \left(\frac{W_M^2}{Q \, S_{Ref} \, C_{N_\alpha}} - \frac{Q \, S_{Ref} \, C_A}{n_z^2} \right) \frac{V^2}{G} = 0$$

□ The term in parenthesis vanishes when

 $n_{z_{opt}} = \frac{Q S_{Ref}}{W_M} \sqrt{C_A C_{N_{\alpha}}}$ Optimum maneuver level for a turn

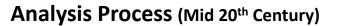
Turn radius for the optimal turn can easily be found

$$R_{opt} = \frac{V^2}{n_z \, G}$$

The Optimal Turn is a Function of Mach and Altitude

- Gaining an understanding of the interceptor's preferred regions of operation is important for trajectories with long cruise phases
 - > Optimal cruise altitude
 - Optimal turns
- A more accurate solution must be considered when synthesizing a trajectory which is meant to be folded into a robust weapon system
 - High depth of fire
 - Area defense considerations
 - Optimal terminal speed / good intercept geometry
 - Etc.
- The complexities of the robust solution make this problem mathematically challenging
 - A trajectory analysis process must be invoked to develop trajectories that work well across the battlespace

Jniversity Trajectory Analysis Process



Kowa

- 1. Select desired trajectory shape
- 2. Select form of guidance law using simplified system equations and intuition
- 3. Tune guidance law to obtain desired shape
- 4. Expand number of intercept points
- 5. Insert noise, tolerances into analysis
- 6. Evaluate special threats (if any)
- 7. Modify guidance law (if necessary)
- Repeat steps 3-8 for each intercept point until each intercept point has satisfactory performance and transitions between intercept points are acceptable

Analysis Process (Late 20th and 21st Century)

- 1. Select desired trajectory shape
- 2. Select form of guidance law using optimal control theory
- 3. Conduct study varying all guidance parameters parametrically
- 4. Data mine for the best subset of trajectories given specified criteria
- Find the guidance parameters for each intercept point which allows for an acceptable transition between neighboring intercept points

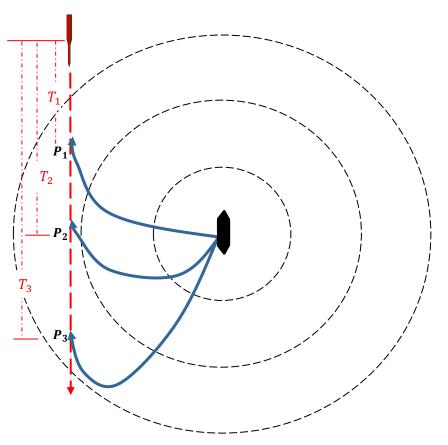
- As guidance parameters change from intercept point to intercept point, care must be given to ensure robust system performance is guaranteed temporally and spatially
- Temporally
 - Change in time of flight as a function of range is gradual to avoid "holes" in scheduling algorithms
 - > Time of flight to each intercept point increases monotonically as a function of range
 - > Contour plots are a fantastic way to evaluate this criteria, but requires artistic evaluation
 - More often then not, a human must evaluated "goodness of fit" of the trajectory solutions across the battlespace
- Spatially
 - Trajectories should not overlap in the horizontal or vertical planes to reduced risk of fratricide
 - Imposes a constraint on start and end point parameter selection for trajectory shaping

Robust trajectory shaping designs consider the time of flight of each intercept point in relation to adjacent points

- Consider the time of flight (TOF) for point P₁, P₂, and P₃
- □ The time it takes for the target to arrive at those points are noted as T_1 , T_2 , and T_3
- In order for the scheduler to have a valid firing solution for all points along the target's path, the following must be true

 $TOF_{R_a} > TOF_{R_b}$ if $R_a > R_b$

- > TOF_{R_x} is the time of flight at range R_x from the firing platform
- The use of shaping in one area of the battlespace may force shaping in other areas of the battlespace



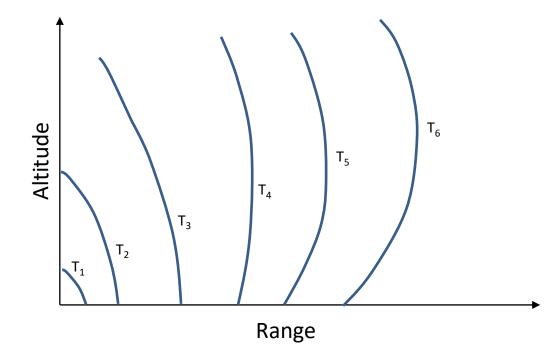
University Standard Measures of Trajectories

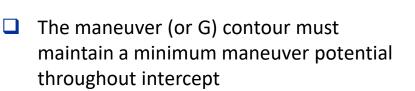
- One uses specific characteristics of trajectories over an entire battlespace to verify a complete system design has been achieved
- Characteristics of interest

Rowa

- > Time line contours
- Maneuver contours / Mach line contours
- > Trajectory shapes
- Intercept boundaries / Engagement boundaries

- □ The basic requirement for the timeline contour is
 - \succ T₁ < T₂ < T_N
 - Some consideration must be given to the spacing of the contour lines such that "steps" or "jumps" are not present

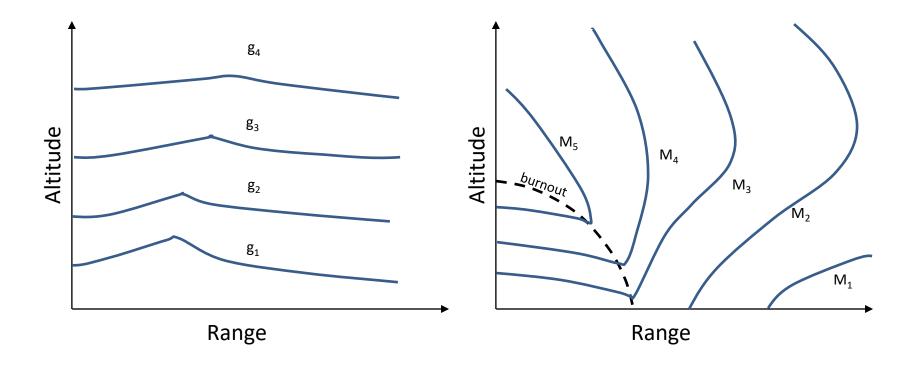




> $(g_1 > g_2 > ... g_N) > g_{min}$

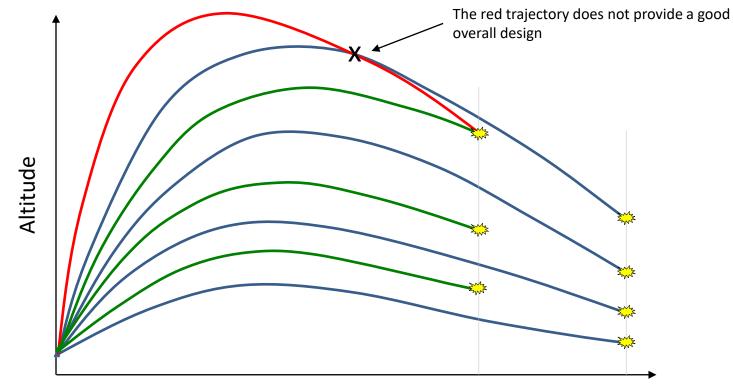
The Mach contour helps satisfy some basic aerodynamic stability requirements throughout flight

 $> M_x > M_{min}$

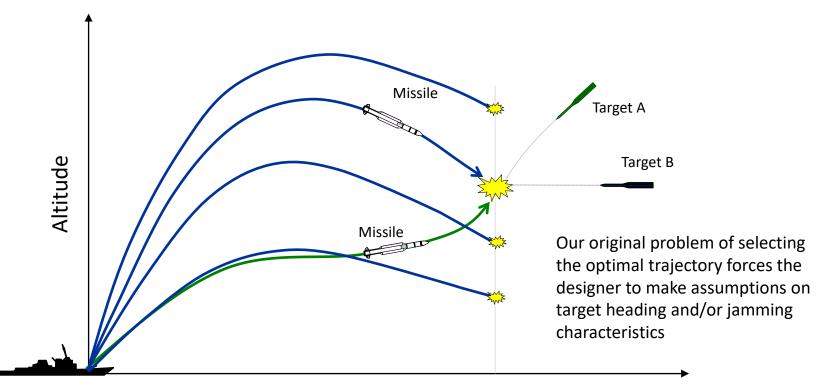


Trajectories should be "well behaved" – meaning the trajectory lines should never touch

- > This reduces the probability of fratricide
- > This increases the probability of monotonic time of flight across the battlespace



□ The need to ensure trajectories don't overlap results in the guidance policy being consistent across the battlespace OR a multiple guidance policies are required and a guidance policy selection algorithm must be incorporated



Range

1. Lange, Steve. Missile Trajectory Design. Missile System Engineering Fundamentals, Lockheed Martin Course, ~1984