# Chapter 3 - The Laplace Transform $f(t)$ is causal, $f(t) = 0$ for $t < 0$. $$F(s) = L[f(t)] = \int\limits_0^\infty f(t) e^{-st}dt$$ $s$ is a complex variable of the form: $$s = \sigma + j\omega$$ ### The Region of Convergence The ROC is the set of all values of $s$ for which the one-sided Laplace transform exists. If the causal $f(t)$ has finite support in the temporal region: $$0 \le t_1 \le t_2 < \infty$$ $$F(s) = L[f(t)] = \int\limits_{t_1}^{t_2} f(t)e^{-st}dt$$ If $f(t)$ is causal, the ROC includes $s = \infty$. If $f(t)$ has infinite support, $F(s)$ can be written as the ratio of two functions $N(s)$ and $D(s)$. $$F(s) = {N(s) \over D(s)}$$ ### Example (Finite Support) $$F(s) = {s \over s^2 + 2s + 2}$$ Zero at $s=0$, poles at $s = -1 \pm j$. ROC does not contain any poles, and is not influenced by zeros. ### Example (Infinite Support) $$F(s) = {s+1 \over (s+2)(s+5)}$$ ROC is $\Re\{s\} > -2$ ### Laplace Transform of Impulse $$L[\delta(t)] = \int\limits_0^\infty \delta(t)e^{-st}dt = 1$$ $$L[\delta(t - \alpha)] = e^{-\alpha s}$$ ### Example Find the Laplace transform of a causal version of the complex exponential $$L[e^{ja t}u(t)] = \int\limits_0^\infty e^{ja t}e^{-st}dt$$ $$F(s) = \lim_{v \to \infty} \int\limits_0^v e^{(ja-s)t}dt$$ $$F(s) = -{1\over s-ja} \lim_{v\to\infty}[e^{(ja-s)v}-1]={1\over s- ja}$$ Since $a$ is generally a complex number, $s = \sigma + j\omega$ and $a = \alpha + j\omega$. ## The Inverse Laplace Transform $$F(s) = {3s + 5 \over (s+1)(s+2)} = {A \over s+1} + {B \over s+2}$$ Region of convergence: $$\Re\{s\} > -1$$ Solve for $A$ and $B$: $$3s + 5 = A(s+2) + B(s+1)$$ Eliminate $B$ by setting $s$ to -1: $$3(-1) + 5 = A(-1 + 2) + B(-1 + 1)$$ $$2 = A$$ Eliminate $A$ by setting $s$ to -2: $$3(-2) + 5 = A(-2 + 2) + B(-2 + 1)$$ $$-1 = -B \therefore B=1$$ Plug back in for $F(s)$: $$F(s) = {2 \over s+1} + {1 \over s+2}$$ $$\therefore f(t)=\left[2e^{-t} + e^{-2t}\right]u(t)$$ **Note:** multiplying by $u(t)$ is required to make $f(t)$ causal. ### Example of the Delay Property $$F(s) = {4e^{-10s} \over s(s+2)^2}$$ Take out the $e^{-10s}$ term and evaluate. $$G(s) = {4 \over s(s+2)^2} = {A \over s} + {B \over s+2} + {C \over (s+2)^2}$$ $$4 = A(s+2)^2 + Bs(s+2) + Cs$$ Setting $s=0$ eliminates $B$ and $C$ $$4 = A(0+2)^2 + B(0)(0+2) + C(0)$$ $$4 = 4A \therefore A = 1$$ Setting $s=-2$ eliminates $A$ and $B$: $$4 = A(-2 + 2)^2 + B(-2)(-2+2) + C(-2)$$ $$4 = -2C \therefore C=-2$$ Set an easy $s$ value to solve for $B$, $s=1$: $$4 = 1(1+2)^2 + B(1)(1+2) + -2(1)$$ $$4 = 9 + 3B-2 \therefore B=-1$$ Plug back in: $$G(s) = {4 \over s(s+2)^2} = {1 \over s} - {1 \over s+2} - {2 \over (s+2)^2}$$ Solve for $g(t)$ $$g(t) = \left[1 -e^{-2t} -2te^{-2t}\right]u(t)$$ By taking out the delay term, $e^{-10t}$, we offset $g(t)$ with respect to $f(t)$. To solve for $f(t)$, we must take this offset into account. The delay is by $10$, so for each $t$ in $g(t)$, there is a $(t-10)$ in $f(t)$. Plug in and solve: $$f(t) = \left[1-e^{-2(t-10)}-2(t-10)e^{-2(t-10)}\right] u(t-10)$$ ## Differential Equations using Laplace Transforms $${df \over dt} + 6f(t) = u(t), f(0^-) = 1$$ $$s F(s) - f(0^-) + 6F(s) = {1 \over s}$$ $$(s + 6) F(s) = {1\over s} + 1$$ $$F(s) = {1 + s \over s(s + 6)}$$ $$F(s) = {A \over s} + {B \over s + 6}$$ $$1 + s = (s +6)A + sB$$ $$A = {1\over6}, B = {5\over6}$$ $$F(s) = {1 \over 6s} + {5 \over 6(s + 6)}$$ $$f(t) = \left[{1 \over 6} + {5 \over 6} e^{-6t}\right]u(t)$$