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Linear and Time Invariant Systems
Aidan Sharpe & Elise Heim

Abstract—This lab includes finding a transfer function and
using the impulse response as part of functions built into the
symbolic math toolbox. It also entails using convolutions so
recognize how the shape of a function is modified by the shape of
another function. It also involves completing Laplace and inverse
Laplace transformations upon functions. And finally, it includes
experimenting with Linear Prediction of Speech, and how to
sample and exploring different features of speech audio clips.

I. INTRODUCTION & OBJECTIVES

An important purpose of this lab is becoming familiar with
the symbolic math toolbox on MATLAB. This is beneficial
because it includes functions such as impulse and convolution,
which can be difficult to program by oneself. This toolbox is
advantageous for the first two questions of the lab in particular.
Another key takeaway includes learning how to compute a
Laplace Transformation and an Inverse Laplace Transforma-
tion in MATLAB. This can be very helpful, because more
complicated functions can be more difficult to perform such
transformations. Another objective of this lab is learning how
to analyze a speech signal. This includes investigating features
such as the periodicity, pitch, and phoneme, and sampling
the speech signal at regular intervals to get an accurate
understanding.

II. BACKGROUND

This lab includes using the symbolic math toolbox and
its functions. One of which is the impulse function. An
impulse is a brief impulse signal, and an impulse response is
the output. Another such function is conv, for convolutions.
A convolution is an operation that produces a function that
expresses how the shape of one is modified by the other.
One more function is tf, for transfer function. This is the
representation of the relationship between the input and output
of a system. Yet another helpful function, while not in the
toolbox, is the unit step, which is defined as a function wherein
the value is equal to 0 when time is less than 0, and 1 when
time is greater than 0. It looks similar to a step, as its name
suggests. It is often referred to as u(t).

III. RESULTS & DISCUSSION

There were four focal points to this lab: transfer functions
and impulse response, convolutions, Laplace transforms and
inverse Laplace transforms, and attempting linear prediction
of speech.

A. Transfer Functions and Impulse Response

The transfer function of a linear, time-invariant system,
H(s) was plotted in the complex plane, and as shown in figure
1, the system has zeros at -3 and -2 and the poles at −5± j5,

-1, and 0. Zeroes are the inputs where the output value is zero,
typically plotted as a circle. Poles on the other hand exist at the
inputs where the output value is undefined and are typically
plotted with an ”x” marker.

H(s) =
s2 + 5s+ 6

s(s+ 1)(s2 + 10s+ 50)

Fig. 1. Plot of poles and zeros of H(s)

The impulse response of the system can be created using
the impulse() function. Given that the initial value theorem
shown in equation 1, we can calculate h(0). Evaluating the
limit gives an initial value of h(0) = 0. This reflects the plot
of the impulse response. In a similar manner, the final value
theorem, as seen in 2, also invokes a limit to evaluate the
impulse response at an extreme input, in this case, t = ∞.
Through this theorem, we can calculate the steady-state value
of h(t). When s goes to 0, only constants remain, and value
goes to 3

25 in the limit. The plot of the impulse response is
again in agreement with predictions, with the plot levelling off
at a value approaching 0.12.

Fig. 2. The impulse response of H(s)
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h(0) = lim
s→∞

sH(s) (1)

lim
t→∞

h(t) = lim
s→0

sH(s) (2)

The next step includes using an inverse Laplace function
in order to find the impulse response of the system. This was
accomplished with the ilaplace() function. By applying
this function to the system, H(s), the impulse response was
found to be h(t), shown below.

h(t) = u(t)
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]
B. Impulse Response-Based System Analysis

In this part, the LTI system with the impulse response, h(t)
(shown below) was used for analysis. For an linear, time-
invariant system, if the impulse response is causal—that is
for all inputs where t < 0, the value is 0—then the entire
system is said to be causal—that is no output depends on
future inputs.

h(t) = u(t)− u(t− 1)

In this case, since the value of h(t) is 0 for all t < 0, the
LTI system it is the impulse response of is said to be causal.

For the system with impulse response, h(t), to be considered
BIBO stable, the area under the impulse response curve must
be bounded. The rigorous definition for BIBO stability is seen
in equation, 3. Since the integral can be simplified as a finite
area of a rectangle under the difference of two unit steps, the
system was determined to be BIBO stable.

∞∫
−∞

|h(t)|dt < ∞ (3)

To find the response of an arbitrary signal, x(t), into an LTI
system, it is simply the convolution of the impulse response
with the signal. This can be done by evaluating the integral
described by equation 4.

y(t) = x(t) ∗ h(t) =
∫

x(τ)h(t− τ)dτ (4)

Given this process to arrive at the response of an arbitrary
signal, we can determine the response of the signal, x(t),
shown below.

x(t) = e−2tu(t)

C. Laplace Transforms and Inverse Laplace Transforms

This part consisted of evaluating the Laplace transform of
a real exponential modulated by a cosine. The signal and its
Laplace transform are seen below.

x(t) = e−t cos(10t)u(t)

X(s) = L{x(t)}(s) = s+ 1

s2 + 2s+ 101

Fig. 3. Pole-Zero map for X(s)

Fig. 4. Impulse response of X(s)

Plotting X(s) for its poles and zeros yields the pole-zero
map shown in figure 3.

X(s) =
2s+ 3

s2 + 2s+ 4

x(t) = L−1{X(s)}(t) =
√
3

3
sin(

√
3t)e−t + 2 cos(

√
3t)e−t

Plotting the impulse response, x(t), yields the time domain
function shown in figure 4.

IV. CONCLUSION

Through the course of this lab, one can become very familiar
with the symbolic math toolbox that MATLAB offers. Using
the functions for impulse, convolutions, transfer functions,
Laplace, and inverse Laplace transformations greatly assist
with completing such exercises. These tools will prove to be
helpful in the future when working with LTI systems in the
wild. Since RL, RC, and RLC circuits can all be modeled
as LTI systems, knowing how to use these tools will make
working with and designing these types of circuits much easier
in the future.


