
Creating and Editing Python Files
Installing a Text Editor
A text editor is a type of program that (unsurprisingly) lets you edit text. Code
is just text after all, so picking a good text editor is important to making writing
code easier. There are plenty of good (and just as many bad) options available,
so feel free to do some research. Personally, I use Vim and Neovim, which have
a steep learning curve, but run really fast and allow for efficient edits. For the
purposes of this exercise, however, I recommend Visual Studio Code (VS Code).

To install VS Code, first open the Microsoft Store and search for visual studio
code. Select the one called “Visual Studio Code”. You should not install the
Insiders edition or Visual Studio Community 2022.

1



Open VS Code
Open VS Code, and click File→Open Folder.

Then, create and open a folder for your Python example files. This will be the
folder we work in for all exercises. I recommend that you use a separate folder
for your lab-related Python files, maybe even a separate folder for each lab.
Once you click “Select Folder” you may get a pop-up asking you if you trust this
folder. It’s your folder, so you can trust it no problem.

2



Creating Your First Python File
Hover over the “Explorer” panel, and click the “New File” button.
Call the file “example1.py” or something similar. It is important to
make sure the file ends with .py, so it is recognized as a Python file.

You should get a pop-up in the bottom right corner asking you if you want to
install the Python extension. Go ahead and click the “Install” button to install
the extension. This extension will add special tools to aid you in developing and
running Python. Once it is done installing, close the tab, and switch to the tab
for the Python file you previously created.

3



Writing a Python Program in a File
Copy the code from the image below to create a simple “hello world” program.
This program defines the main() function that, when called, prints the text
“Hello, world!” to the console. Then on line 5, we call the main() function.
Once you are done copying, click the play button in the upper-right corner. The
output from your code will show up in the terminal at the bottom of your screen.

4



The import Statement
Make a new file called “import_example.py” and copy the code from the image
below. Again, click the play button to run your code. Notice that “Hello world!”
was printed to the console even though we did not call the main() function
directly from import_example.py. This was done because the import keyword
both loads and runs the file being imported.

To fix this behavior, so we have to call the main() function explicitly from files
that import example1.py, we can add the following code to our original file:

Please note that __name__ and "__main__" have a double underscore before
and after. These double underscore are special Python attributes called “dunder

5



attributes”. The __name__ attribute is set by whichever file is doing the importing.
In the example above, import_example.py was importing example1.py. When
the file is run directly, the __name__ attribute is set to "__main__". In this way,
we can actually create different behavior depending on whether or not the file
is being run directly or being imported by another file. This can be a super
helpful tool when debugging your code, so you will often see if __name__ ==
"__main__": in files that are meant to be executed directly.

Installing Libraries
For your labs, we will be using several libraries to make doing DSP-specific tasks
easier and faster. These libraries are numpy, scipy, matplotlib, and sympy. To
install them, we use pip—the package installer for Python. In the terminal at
the bottom of your screen type the command:

pip install numpy scipy matlotlib sympy

and hit the “enter” key to execute it. Wait for the packages to install, and you’re
done!

If you get an error message saying that the pip command doesn’t exist, try the
command:

python -m pip install numpy scipy matplotlib sympy

6



Creating Your First Plot
To make a plot in Python, we will start by making a new file called
plot_example.py. We will use two libraries to make our plot: numpy for
array creation and manipulation and matplotlib for drawing the plot. To
use the libraries, we import them. To make using the libraries easer, we can
give them aliases. It is standard to use np as the alias for numpy and plt for
matplotlib.pyplot. This reduces the amount of typing we have to do while
writing the program without losing any meaning or clarity. To make an alias we
use the as keyword as shown below:

7



Now that we can use the libraries in our code, we will actually make our plot. We
start by defining our time (horizontal) axis as 100 evenly spaced points between
-1 and 1 using the function np.linspace(-1, 1, 100). I chose to plot a cosine,
so we will need a frequency of oscillation. We can define our frequency with a
variable and convert it to angular frequency and store that in another variable.
The numpy library has special functions like np.cos() that return a new array
containing the cosine of every element in the input array. We can then plot the
signal-vs-time using the plt.plot(horiz, vert) function. This will create a
line graph, but since we have 100 points, it will appear as a smooth curve. To
actually show the graph, we need to call another function plt.show(). This
function shows the current figure in a window, so we can see it. Copy the code
shown below, and run it to see the plot.

Sampling
In digital systems, we do not have access to continuous functions. Instead, we
only have samples. To create a time axis that uses a set sampling period Ts

instead of a set number of points, we can use the np.arange(lower_bound,
upper_bound, T_s) function. We typically use the plt.stem() function instead
of the plt.plot() function to better show the individual samples. As an exercise,
try to re-write the original example plot using the minimum sampling frequency
that does not result in aliasing. Hint: what is the relationship between sampling
frequency and sampling period?

8



Closing
Now we have a text editor and all the libraries we will need for the course
installed. We also learned how to create and run Python files, and how to use
the import keyword. Finally, we learned a little bit about using the numpy and
matplotlib libraries. For the official documentation for each of the libraries see
the table below:

Library Name Doc Website
Numpy numpy.org
Scipy scipy.org
Matplotlib matlotlib.org
Sympy sympy.org

9

https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/
https://matplotlib.org/stable/
https://docs.sympy.org/latest/index.html

	Creating and Editing Python Files
	Installing a Text Editor
	Open VS Code
	Creating Your First Python File
	Writing a Python Program in a File
	The import Statement
	Installing Libraries
	Creating Your First Plot
	Sampling
	Closing


