Name:

Circle or write the correct answer.

- 1. Consider a continuous time signal x(t) that is sampled at 2 Hz to get a discrete time signal x(n). When taking the DTFT of x(n), the digital frequency $\omega = \pi/4$ corresponds to an analog frequency of
 - (A) 0 Hz
 - (B) 0.25 Hz
 - (C) 0.5 Hz
 - (D) 0.75 Hz
 - (E) 1 Hz
 - (F) 2 Hz
- 2. Consider a continuous time signal given by $x(t) = cos(2 \pi f t)$. It is sampled at $f_s = 100$ Hz or equivalently at a sampling period of $T_s = 0.01$ seconds/sample to get a discrete time signal $x(n) = cos(2 \pi f n T_s)$. If f = 20 Hz, let the sampled discrete time signal be denoted by $x_1(n)$. If f = 80 Hz, let the sampled discrete time signal be denoted by $x_2(n)$. Which of the following statements is true?

(A)
$$x_1(n) = x_2(n)$$

- (B) $x_1(n) = -x_2(n)$
- (C) $x_1(n) = 4x_2(n)$
- (D) $x_1(n) = -4x_2(n)$
- (E) $4x_1(n) = x_2(n)$
- (F) $-4x_1(n) = x_2(n)$

3. Consider the signal $x(n) = a^{|n|}$ for $-\infty \le n \le \infty$. If |a| < 1 (a $\ne 0$) and $X(e^{j\omega})$ is the DTFT of x(n), $X(e^{j0})$ equals

$(A)\frac{1+a}{1-a}$
(B) $\frac{1-a}{1+a}$
$(C)\frac{1+a}{(1-a)^2}$
$(D)\frac{1-a}{(1+a)^2}$
(E) 1

- 4. A linear and time-invariant (LTI) system has an impulse response h(n) = u(n) where u(n) is the unit-step. The input to the system is x(n) = u(n) and the output is y(n). An expression for y(n) is given by

 (A) y(n) = 0
 (B) y(n) = u(n)
 (C) y(n) = n u(n)
 - (D) y(n) = (n + 1) u(n)
- 5. What is the power of the signal $x(n) = cos(\pi n/2)$?
 - (A) 0
 - (B) 0.5
 - (C) 1
 - (D) 1.5
 - (E) 2
 - (F) 4

6. Consider x(n) with a DTFT X($e^{j\omega}$) = cos(3 ω). What is the value of

$$\sum_{n} (-1)^n x(n) ?$$

- (A) 3
- (B) 2
- (C) 1
- (D) 0.5
- (E) O
- (F) -0.5
- (G) -1
- (H) -2
- (I) -3
- 7. Let the DTFT of $a^n u(n)$ (u(n) is the unit-step, |a| < 1 and $a \neq 0$) be A($e^{j\omega}$) = $1/(1 a e^{-j\omega})$. What is the DTFT of x(n) = $a^n u(n 2)$?

(A)
$$\frac{1}{1-ae^{-j\omega}}$$

(B)
$$\frac{e^{-j2\omega}}{1-ae^{-j\omega}}$$

(C)
$$\frac{a^2 e^{-j2\omega}}{1-ae^{-j\omega}}$$

(D) 1

- The DTFT of the real discrete time signal x(n) = n 5ⁿ [u(n) u(n 4)] (u(n) is the unit-step)
 - (A) does not exist
 - (B) exists but is not periodic in 2π
 - (C) has a real part of 0 when $\omega = \pi$
 - (D) has a nonzero real and imaginary part when $\omega = \pi/2$
- 9. Determine the value of

$$\sum_{n=-\infty}^{\infty} \delta(n+3)(n^2+n)$$

- (A) 6
- (B) 12
- (C) 0
- (D) ∞
- 10. Consider a system given by y(n) = S[x(n)] = (k² 3k 4) log(x(n)) + x(n) where k is a fixed real constant, log refers to the natural logarithm and x(n) > 0 for all n. For what values of k will the system be linear?
 - (A) k = 1 and k = 4
 - (B) k = 2 and k = 3
 - (C) k = 4 and k = 5
 - (D) k = -1 and k = 4