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1 Results & Discussion

1.1 The Discrete Fourier Transform (DFT)

Given a signal, x[n], it’s N -point DFT is given by

Xk =

N−1∑
n=0

x[n]W kn
N , (1)

where WN = e−j2π/N . The discrete Fourier transform is the sampled version of the discrete time Fourier
transform (DTFT), which is a continuous function. More specifically, the N -point DFT contains N samples
from the continuous DTFT.

For example, consider the signal x[n] = (−1)n for 0 ≤ n ≤ N − 1. By evaluating the sum shown in
equation 1 as a truncated geometric series, the N -point DFT of x[n] can be found. All truncated geometric
series are evaluated as

n−1∑
k=0

ark =

{
an r = 1

a
(

1−rn

1−r

)
r ̸= 1

, (2)

where r is the common ratio between adjacent terms. For the N -point DFT of x[n], the common ratio is
−W k

N , which takes a value of 1 for k = N
2 . Therefore, the N -point DFT of x[n] is

X[k] =

{
N k = N

2(
1−(−Wk

N )N

1−(−Wk
N )

)
k ̸= N

2

. (3)

The N -point DFT of x[n], where N = 8 is seen in figure 1. It only has a non-zero value for k = N
2 = 4.

This is the case for all even-number-point DFTs. Therefore, only odd-number-point DFTs should be used.
For example, the 9-point DFT of x[n], where N = 8 is seen in figure 2. While equation 3 cannot be used

Figure 1: The N -point DFT of x[n], where N = 8

because there are a different number of samples for the DFT and the input signal, the overall DFT is more
useful than the 8-point DFT.

1.2 The Z-Transform

Given a discrete signal, x[n], its z-transform is given by

X(z) =
∑
n

x[n]z−n (4)
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Figure 2: The 9-point DFT of x[n], where N = 8

where z is a complex variable. The Z-transform of any discrete signal is a continuous function. Therefore, any
attempt to calculate the Z-transform with a digital computer requires sampling or symbolic math. Symbolic
math is quite a powerful tool, and others have worked hard to implement the Z-transform as a symbolic
function. In MATLAB, this function is ztrans.

The Z-transform of the following signals can be found very quickly using this method:

x1[n] = anu[n]

x2[n] = (n+ 1)anu[n]

x3[n] = an cos(bn)u[n]

Z{x1[n]} = − z

a− z

Z{x2[n]} =
az

(a− z)2
− z

a− 2

Z{x3[n]} = − z(cos(b)− z/a)

a z2

a2 − 2z cos(b)
a + 1

1.3 The Inverse Z-Transform

Similarly, the inverse Z-transform also benefits from using a symbolic calculator. For example, the inverse
Z-transform of the following can be found rapidly:

Z{x4[n]} =
z

z + 0.5

Z{x5[n]} =
z2

(z − 0.8)2

Z{x6[n]} =
z

(z + 0.3)(z + 0.6)2

x4[n] = (−1/2)n

x5[n] = 2(4/5)n(n− 1)(4/5)n

x6[n] =
50n(−3/5)n − 100(−3/5)n + 100(−3/10)n
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2 Conclusions

Overall understanding tricks for calculating geometric sums is very helpful for calculating DFTs. It is also
important to use odd-number-point DFTs only, as taking an even number of samples forces almost all values
to go to zero. As for Z-transforms and inverse Z-transforms, knowing how to use symbolic computation
makes finding them quite easy. Additionally, symbolic computation allows for the easy manipulation of how
simplified or expanded the result is.
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