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A signal is anything that is used to convey information. Analog signals are continuously variable, but in
this course the focus will be put on digital signals. Digital signals are signals that are made up of discrete values.
Some advantages of using digital signals are as follows:

1. Flexibility and programmibility

2. More immune to noise

3. Signal reproducibility

4. Ease of maintenance and troubleshooting

5. Signal storage

Furthermore, a signal can depend on any number of variables. A signal that only depends on one variable
is considered one-dimensional. This course will primarily be directed towards these one-dimensional signals.

One example of the many use cases for digital signal processing is speech processing. This can include
another range of topics such as speech recognition, speech enhancement, and speech encoding and compression.
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Chapter 1

Discrete Time Signals

1.1 Uniform Sampling

The first step to uniform sampling is to discretize the time axis. Uniform sampling converts a continuous time
signal, 𝑥(𝑡) into a discrete signal by considering the samples of 𝑥(𝑡) at uniform times, 𝑡 = 𝑛𝑇𝑠 ; where 𝑛 is an
integer and 𝑇𝑠 is the sampling period.

The Dirac Delta function, or the impulse function is defined as:

𝛿(𝑡) =


0 𝑡 < 0

∞ 𝑡 = 0

0 𝑡 > 0

The strength of the impulse function is typically defined to be unity. This is more rigorously given by:

∞∫
−∞

𝛿(𝑡)𝑑𝑡 = 1

The sampling property of the impulse function is defined as:

𝑓 (𝑡)𝛿(𝑡 − 𝑡0) = 𝑓 (𝑡0)𝛿(𝑡 − 𝑡0)

The sifting property of the impulse function is given by:

∞∫
−∞

𝑓 (𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑓 (𝑡0)

To sample a signal, 𝑥(𝑡), uniformly through time, an impulse train is used. Each sample of the signal can be
written in the form:

𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠)
Therefore, the resulting sampled signal at all times, 𝑡, is given by:

𝑥𝑠(𝑡) = 𝑥(𝑡)
∞∑

𝑛=−∞
𝛿(𝑡 − 𝑛𝑇𝑠)

The signal, 𝑥imp(𝑡), is a continuous and periodic function with period, 𝑇𝑠 . It is given by:

𝑥imp(𝑡) =
∞∑

𝑛=−∞
𝛿(𝑡 − 𝑛𝑇𝑠)
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Since the definition of the Fourier series states that any continuous and periodic signal can be represented as a
linear weighted combination of complex exponentials, we can rewrite 𝑥imp(𝑡) in terms of a complex Fourier series:

𝑥imp(𝑡) =
∞∑

𝑘=−∞
𝑋𝑘 𝑒

𝑗𝑘Ω𝑠 𝑡

Where:

𝑋𝑘 are the Fourier series coefficients

Ω𝑠 is the angular sampling frequency defined as Ω𝑠 =
2𝜋
𝑇𝑠

Since Ω𝑠 is entirely dependent on 𝑇𝑠 , the only unknown is the values of the Fourier series coefficients, 𝑋𝑘 . These
coefficients can be found by:

𝑋𝑘 =
1

𝑇𝑠

𝑇𝑠
2∫

−𝑇𝑠
2

𝛿(𝑡)𝑒−𝑗𝑘Ω𝑠 𝑡𝑑𝑡

In this case, 𝑋𝑘 is always 1
𝑇𝑠
. Therefore, the Fourier series definition for 𝑥imp(𝑡) is:

𝑥imp(𝑡) =
∞∑

𝑘=−∞

1

𝑇𝑠
𝑒 𝑗𝑘Ω𝑠 𝑡

To sample 𝑥(𝑡) and get 𝑥𝑠(𝑡), simply take the product of 𝑥(𝑡) and 𝑥imp(𝑡):

𝑥𝑠(𝑡) =
∞∑

𝑘=−∞

1

𝑇𝑠
𝑥(𝑡)𝑒 𝑗𝑘Ω𝑠 𝑡

This sampled signal is called a discrete signal or a digital signal. While working with 𝑥𝑠(𝑡) in this form is not
often practical, taking a Fourier transform gives more insight.

𝐹[𝛿(𝑡 − 𝑎)] = 𝑒−𝑗Ω𝑎

𝑥(𝑡) 𝐹←→ 𝑋(Ω)

𝑥(𝑡 − 𝛼) 𝐹←→ 𝑋(Ω)𝑒−𝑗Ω𝛼

𝑥(𝑡)𝑒 𝑗𝑛Ω0𝑡
𝐹←→= 𝑋(Ω −Ω0)

Using these properties, the Fourier transform of 𝑥𝑠(𝑡) is:

𝐹[𝑥𝑠(𝑡)] = 𝐹

[
1

𝑇𝑠

∞∑
𝑛=−∞

𝑥(𝑡)𝑒 𝑗𝑛Ω𝑠 𝑡

]

𝑋𝑠(Ω) =
1

𝑇𝑠

∞∑
𝑛=−∞

𝐹
[
𝑥(𝑡)𝑒 𝑗𝑛Ω𝑠 𝑡

]
𝑋𝑠(Ω) =

1

𝑇𝑠

∞∑
𝑛=−∞

𝑋(Ω − 𝑛Ω𝑠)

𝑋𝑠(Ω) =
1

𝑇𝑠
𝑋(Ω)

Theorem 1.1.1 The Sampling Theorem

A band-limited signal, 𝑥(𝑡)—its low-pass spectrum 𝑋(Ω) is such that 𝑋(Ω) = 0 for |Ω| > Ωmax where Ωmax

is the maximum frequency in 𝑥(𝑡)—can be sampled uniformly and without frequency aliasing (overlap
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between spectral copies) using a sampling frequency of Ω𝑠 = 2𝜋
𝑇𝑠
≥ 2Ω called the Nyquist sampling rate

condition.

Example 1.1.1 (Sampling Theorem)

A signal, 𝑥(𝑡), is given by:

𝑥(𝑡) = 2 cos(2𝜋𝑡 + 𝜋
4
)

Since there exists a maximum frequency, in this case, 1[Hz], 𝑥(𝑡) is considered a band-limited signal.

𝑓𝑠 ≥ 2 𝑓𝑚

𝑓𝑠 ≥ 2[Hz]

𝑇𝑠 ≤
1

2
[samples/s]

A good figure of merit is to let Ωmax be the frequency such that 99% of the signal energy is in the interval
[−Ωmax ,Ωmax]. The signal energy in the time domain is given by:

𝐸𝑥 =

∞∫
−∞

|𝑥(𝑡)|2𝑑𝑡

Using the Perseval’s relationship, the signal energy can be computed using only knowledge from the frequency
domain.

𝐸𝑥 =
1

2𝜋

∞∫
−∞

|𝑋(𝜔)|2𝑑𝑡

1.2 Characterizing Discrete Signals in the Time Domain

Definition 1.2.1: Causal Signal

𝑥[𝑛] is said to be a causal signal if 𝑥[𝑛] has zero value for 𝑛 < 0.

When a signal, 𝑥[𝑛], is discritized following the sampling theorem, it domain is the integers, and it can take real
and complex values.

Definition 1.2.2: Anti-Causal Signal

𝑥[𝑛] is said to be an anti-causal signal if 𝑥[𝑛] has zero value for 𝑛 ≥ 0.

At 𝑛 = 0, a causal signal can have a nonzero value, but an anti-causal signal cannot.

Definition 1.2.3: Finite Support Signal

𝑥[𝑛] is said to have finite support if there exists integers, 𝑁1 and 𝑁2, such that 𝑥[𝑛] has zero value for
𝑛 < 𝑁1 and 𝑁2, where 𝑁2 ≤ 𝑁1.

Finite support signals have a finite domain, and for discrete signals, finite values of 𝑛 that correspond to a non-zero
signal value.

Definition 1.2.4: Infinite Support Signals

𝑥[𝑛] is said to have infinite support or infinite duration if it does not have finite support.
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For infinite support signals, there do not exist two integers, 𝑁1 and 𝑁2, such that 𝑥[𝑛] = 0 for 𝑛 < 𝑁1 and
𝑛 > 𝑁2. Infinite support signals exist in the following forms:

1. Right-sided signal: 𝑁 < 𝑛 < ∞

2. Left-sided signal: −∞ < 𝑛 < 𝑁

3. Two-sided signal: −∞ < 𝑛 < ∞

Definition 1.2.5: Discrete Impulse

The impulse signal can be written in the discrete domain as:

𝛿[𝑛] =
{
1 𝑛 = 0

0 otherwise

Since the discrete impulse signal has a non-zero value only at 𝑛 = 1, it is a causal signal with finite support.

Example 1.2.1

Consider the signal, 𝑥[𝑛] = 𝛿[𝑛 − 𝑎]:

𝛿[𝑛 − 𝑎] =


0 𝑛 < 𝑎

1 𝑛 = 𝑎

0 𝑛 > 𝑎

Since 𝑥[𝑛] has a non-zero value only at 𝑛 = 𝑎, it is a finite support signal. If 𝑎 ≥ 0, the signal is causal,
but if 𝑎 < 0, the signal is non-causal. In this case, if 𝑎 < 0, then it is also an anti-causal signal.

Any finite support signal can be represented in terms of discrete impulses.

𝑥[𝑛] =
𝑁2∑

𝑎=𝑁1

𝑘𝑎𝛿[𝑛 − 𝑎]

Definition 1.2.6: Discrete Unit Step

The discrete unit step, 𝑢[𝑛] is defined as:

𝑢[𝑛] =
{
1 𝑛 ≥ 0

0 otherwise

The discrete unit step has right-sided infinite support and is a causal signal. The signal, 𝑢[−𝑛] is defined as:

𝑢[−𝑛] =
{
1 𝑛 ≤ 0

0 otherwise

𝑢[−𝑛] has left-sided infinite support, but it is neither causal nor anti-causal.

1.3 The Norm of a Discrete Signal

Definition 1.3.1: Norm of a Discrete Signal

The mapping of a signal to a value in the range, [0,∞).
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Definition 1.3.2: The 𝐿𝑝 Norm

Given a discrete time signal, 𝑥[𝑛], the 𝐿𝑝 norm of the signal is:[∑
𝑛

|𝑥[𝑛]|𝑝
]1/𝑝

Example 1.3.1 (𝐿𝑝 Norm)

𝑥[𝑛] =
[
3 −5 7 −5 −9

]
Find the 𝐿1, 𝐿2, and 𝐿∞ norms:

𝐿1 norm: ∑
𝑛

|𝑥[𝑛]| = 3 + 5 + 7 + 5 + 9 = 29

𝐿2 norm: [∑
𝑛

|𝑥[𝑛]|2
]1/2

= 𝑠𝑞𝑟𝑡9 + 25 + 49 + 25 + 81 =
√
189 = 3

√
21

𝐿∞ norm:
max |𝑥[𝑛]| = 9

Example 1.3.2 (𝐿𝑝 Norms with Complex Numbers)

𝑥[𝑛] =
[
3 + 𝑗 −5 + 𝑗3 −7 − 𝑗 9 − 𝑗4 10

]
𝐿1 norm: ∑

𝑛

|𝑥[𝑛]| =
√
10 + 𝑠𝑞𝑟𝑡34 +

√
50 +
√
97 + 10

𝐿2 norm: [∑
𝑛

|𝑥[𝑛]|2
]1/2

=
√
10 + 34 + 50 + 97 + 100

𝐿∞ norm:
max |𝑥[𝑛]| = 10

Example 1.3.3

𝑥[𝑛] =
[
1 𝑗 1 𝑗 1 𝑗 1 𝑗 · · ·

]
, 𝑛 ∈ ℤ ∩ [0, 99]

𝐿1 norm: ∑
𝑛

|𝑥[𝑛]| = 100
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𝐿2 norm: [∑
𝑛

|𝑥[𝑛]|2
]1/2

=
√
100 = 10

𝐿∞ norm:
max |𝑥[𝑛]| = 1

1.3.1 Geometric Series

There are two types of geometric series: finite and infinite.

Definition 1.3.3: Infinite Geometric Series

Infinite geometric series are of the form:
∞∑

𝑛=𝑚

𝑠𝑛 =
𝑠𝑚

1 − 𝑠

If |𝑠 | < 1, the series will converge, and if |𝑠 | > 1, the series will diverge.

Definition 1.3.4: Finite Geometric Series

A finite geometric series is of the form:
𝑁−1∑
𝑛=0

𝑠𝑛

If 𝑠 = 1, the series converges to 𝑁 , otherwise the series can be evaluated by:

𝑁−1∑
𝑛=0

𝑠𝑛 =
1 − 𝑠𝑁

1 − 𝑠

Example 1.3.4 (Norms of Geometric Series)

𝑥[𝑛] = (−0.5)𝑛𝑢[𝑛]

𝐿1 norm: ∑
𝑛

|𝑥[𝑛]| =
∞∑
𝑛=0

|(−0.5)𝑛 | =
∞∑
𝑛=0

1

2

𝑛

= 2

𝐿2 norm: [∑
𝑛

|𝑥[𝑛]|2
]1/2

=

[ ∞∑
𝑛=0

|(−0.5)𝑛 |2
]1/2

=

[ ∞∑
𝑛=0

1

4

𝑛
]1/2

=

(
1

1 − 0.25

)1/2
=

√
4

3

𝐿∞ norm:
max |𝑥[𝑛]| = max(0.5𝑛), 𝑛 ∈ ℕ0 = 1

For geometric series, if 𝑠 < 1, the 𝐿∞ norm will occur at the smallest 𝑛 in the series.Conversely, for geometric
series where 𝑠 > 1, the 𝐿∞ norm will occur at the largest 𝑛 in the series.
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1.4 Elementary Operations on Signals

An elementary operation operates on each element of a signal. Consider two signals, 𝑥[𝑛] and ℎ[𝑛]. Assume that
the two signals are sampled at the same frequency.

𝑛 𝑥[𝑛] ℎ[𝑛] 𝑥[𝑛] + ℎ[𝑛] 𝑥[𝑛] − ℎ[𝑛] 𝑥[𝑛]ℎ[𝑛]
-2 3 3 3 0
-1 -5 -7 -12 2 35
0 2 3 5 -1 6
1 -6 10 4 -16 -60
2 9 21 30 -12 289
3 -16 -16 16 0
4 6 6 -6 0
5 -3 -3 3 0

In addition to these element-by-element arithmetic operations, elementary operations may also manipulate the
input space.

A signal may be time delayed by 𝑎 in the form ℎ[𝑛 − 𝑎]. Signals can be advanced by 𝑎 in the form ℎ[𝑛 + 𝑎]. Time
may also be reflected around 𝑛 = 0 in the form ℎ[−𝑛]. Perhaps the most interesting operation is the circular
shift.

Definition 1.4.1: Circular Shift

The circular shift is a time shifting operation on a finite length sequence that results in another sequence of
the same length and defined for the same range of values of 𝑛. The domain of the signal will be unchanged.

The modulus operation:
𝑟 = 𝑚 mod 𝑁 = ⟨𝑚⟩𝑁

Another type of discrete elementary operation is the signal rate operation. This involves adding or removing
samples.

Definition 1.4.2: The Downsample Operation

The downsample or sub-sample operation on a signal, 𝑥[𝑛] is given by:

𝑦[𝑛] = 𝑥[𝑀𝑛], 𝑀 ∈ ℤ

This downsamples from every 𝑛 to every 𝑀th sample from 𝑥[𝑛]

When downsampling, the sampling frequency 𝑓𝑠 becomes
𝑓𝑠
𝑀 , and the sampling time, 𝑇𝑠 becomes 𝑀𝑇𝑠 .

Note:

To avoid aliasing, 𝑓𝑠
!
≥ 2 𝑓𝑚 . Beware that downsampling may cause aliasing by decreasing 𝑓𝑠 too much.

On the other hand, a signal may also be upsampled.

Definition 1.4.3: The Upsample Operation

Sampling frequency increases by a factor of 𝑀.

𝑦[𝑛] = 𝑥
[ 𝑛
𝑀

]
, 𝑀 ∈ ℤ

This will insert 𝑀 − 1 zeros between successive samples of 𝑥[𝑛].
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Example 1.4.1 (Upsampling)

𝑥[𝑛] =
[
1 2 3 4

]
𝑀 = 4

𝑦[𝑛] =
[
1 0 0 0 2 · · · 4

]
When upsampling, the sampling frequency, 𝑓𝑠 becomes 𝑀 𝑓𝑠 , and the sampling time, 𝑇𝑠 becomes 𝑇𝑠

𝑀 .
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Chapter 2

Discrete Systems

A discrete system is any system that takes a discrete signal as input and produces a discrete signal as output.

𝑥[𝑛] → 𝑆 → 𝑦[𝑛]

2.1 Properties of Systems

2.1.1 Linearity

For a system to be considered linear, it must satisfy two conditions: homogeneity and superposition.

Homogeneity

For a system to be homogeneous, a scaling of the input by a constant, 𝑎, must produce an output scaled by that
same constant, 𝑎.

𝑦[𝑛] = 𝑆[𝑥[𝑛]
𝑎𝑦[𝑛] = 𝑆[𝑎𝑥[𝑛]]

Superposition

For a system to satisfy superposition, taking the sum of two inputs 𝑥1[𝑛] and 𝑥2[𝑛] as input must produce the
sum of their individual outputs 𝑦1[𝑛] + 𝑦2[𝑛].

𝑦1[𝑛] = 𝑆[𝑥1[𝑛]]

𝑦2[𝑛] = 𝑆[𝑥2[𝑛]]
𝑦1[𝑛] + 𝑦2[𝑛] = 𝑆[𝑥1[𝑛] + 𝑥2[𝑛]]

2.1.2 Time Invarience

For a system to be considered time invariant, delaying or advancing the input must lead to the same delay or
advance in the output.

𝑦[𝑛] = 𝑆[𝑥[𝑛]
𝑦[𝑛 − 𝑎] = 𝑆[𝑥[𝑛 − 𝑎]]

2.1.3 Causality

For a system to be considered causal, the output must only rely on past and present inputs; it cannot depend on
any future inputs.
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2.1.4 Bounded Input, Bounded Output (BIBO) Stability

A system is BIBO stable if every bounded input has a corresponding bounded output.

A bounded input is of the form:
|𝑥[𝑛]| ≤ 𝐵𝑥 < ∞,∀𝑛

A bounded output is of the form:
|𝑦[𝑛]| ≤ 𝐵𝑦 < ∞,∀𝑛

Note:

For unbounded inputs, outputs do not have to be bounded.

Example 2.1.1 (Properties of Downsampling)

The definition of the downsampling operation:

𝑦[𝑛] = 𝑆[𝑥[𝑛]] = 𝑥[𝑀𝑛]

Homogeneity

𝑆[𝑎𝑥[𝑛]] = 𝑎𝑥[𝑀𝑛]
𝑠𝑦[𝑛] = 𝑎𝑥[𝑀𝑛] → The system is homogeneous.

Superposition

𝑦1[𝑛] = 𝑆[𝑥1[𝑛]] = 𝑥1[𝑀𝑛]
𝑦2[𝑛] = 𝑆[𝑥2[𝑛]] = 𝑥2[𝑀𝑛]

𝑆[𝑥1[𝑛] + 𝑥2[𝑛]] = 𝑥1[𝑀𝑛] + 𝑥2[𝑀𝑛] = 𝑦1[𝑛] + 𝑦2[𝑛] → Superposition holds.

Time Invariance

𝑆[𝑥[𝑛 − 𝑎] = 𝑥[𝑀𝑛 − 𝑎]
𝑦[𝑛 − 𝑎] = 𝑥[𝑀(𝑛 − 𝑎)] = 𝑋[𝑀𝑛 −𝑀𝑎] ≠ 𝑆[𝑥[𝑛 − 𝑎]] → The system is not time invariant

Causality

For any value of 𝑀 greater than 1, and 𝑛 greater than 1, 𝑀𝑛 will always be greater than 𝑛, therefore
relying on future inputs.

BIBO Stability

If |𝑥[𝑛]| is bounded by 𝐵𝑥 for all 𝑛, then the output is bounded by 𝐵𝑦 = 𝐵𝑥 for all 𝑛.

2.2 LTI Systems

Linear and time-invariant (LTI) systems are simple systems that are very useful for modelling.

Definition 2.2.1: Impulse Response

The output of a system when the Dirac delta (impulse) function is applied as input.

For discrete systems, the impulse response is given by ℎ[𝑛] as opposed to the ℎ(𝑡) for continuous systems.

Properties of the Discrete LTI Systems

1. The system is causal if the umpulse response is a causal signal

12



2. The system is BIBO stable if the impulse response is absolutely stable∑
𝑛

|ℎ[𝑛]| < ∞

3. 𝑦[𝑛] is computeable for any 𝑥[𝑛]

The Integral Test

Given a continuous, positive, and decreasing function in the interval [1,∞), the indefinite integral and sum either
both converge or both diverge.

Convolution

If the input to the LTI system is 𝑥[𝑛] and the impulse response of the LTI system is ℎ[𝑛], the convolution of 𝑥[𝑛]
and ℎ[𝑛] is given by:

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛]
In the continuous case, the convolution of 𝑥(𝑡) and ℎ(𝑡) is given by:

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) =
∞∫

−∞

𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏

In the discrete case, the convolution of 𝑥[𝑛] and ℎ[𝑛] is given by:

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] =
∞∑

𝑘=−∞
𝑥[𝑘]ℎ[𝑛 − 𝑘] =

∞∑
𝑘=−∞

ℎ[𝑘]𝑥[𝑛 − 𝑘]

2.3 Periodicity

A periodic continuous signal with period 𝑇 is given by:

𝑥(𝑡) = 𝑥(𝑡 − 𝑘𝑇)

A periodic discrete signal with integer period 𝑁 is given by:

𝑥[𝑛] = 𝑥(𝑡 − 𝑘𝑁)

The period of a discrete signal must be an integer because discrete signals are only defined at integer intervals.

If two discrete signals, 𝑥[𝑡] and 𝑦[𝑡] are periodic with periods 𝑁1 and 𝑁2, the period of the sum of the sig-
nals is the least common multiple of 𝑁1 and 𝑁2. If even one signal in a sum of signals is aperiodic, then the
entire sum becomes aperiodic.

In the continuous time domain, sinusoidal and complex exponential signals are always periodic. For discrete
signals, however, it is not as simple. A cosine in the discrete domain takes the form:

𝑥[𝑛] = cos(𝜔0𝑛 + 𝜑)

By the definition of periodicity, for 𝑥[𝑛] to be periodic with period 𝑁 :

𝑥[𝑛] = 𝑥[𝑛 + 𝑁] = cos(𝜔0(𝑛 + 𝑁) + 𝜑)

By distributing 𝜔0 and applying a trigonometric identity:

𝑥[𝑛 + 𝑁] = cos(𝜔0𝑛 + 𝜑) cos(𝜔0𝑁) − sin(𝜔0𝑛 + 𝜑) cos(𝜔0𝑁)

Therefore, for 𝑥[𝑛] to equal 𝑥[𝑛+𝑁], the sine terms must go to 0 and cos(𝜔0𝑁) must be unity. If 𝜔0 is an integer
multiple of 2𝜋, this condition will be satisfied.
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Example 2.3.1 (Periodic Sampling)

Given a signal cos(𝜋𝑛), what is it’s corresponding integer period?

𝜔0 = 𝜋

𝜔0𝑁 = 2𝜋𝑟

𝜋𝑁 = 2𝜋𝑟

𝑁 = 2𝑟

The smallest integer 𝑟 resulting in an integer 𝑁 is 𝑟 = 1. For 𝑟 = 1, 𝑁 = 2, therefore the signal is periodic
with 𝑁 = 2.

Example 2.3.2 (Aperiodic Sampling)

Given the signal cos(𝑒𝜋𝑛 + 7𝜋/9) find it’s corresponding integer period.

𝜔0 = 𝑒𝜋

𝜔0𝑁 = 2𝜋𝑟

𝑒𝜋𝑁 = 2𝜋𝑟

𝑁 =
2

𝑒
𝑟

There is no integer 𝑟 such that 𝑁 is an integer. Therefore the original signal is not discretely periodic.

2.4 Energy and Power

2.4.1 Energy

For a continuous signal, 𝑥(𝑡), the total energy is given by:

𝐸𝑥 =

∞∫
−∞

|𝑥(𝑡)|2𝑑𝑡

Similarly, for a discrete time signal, the total energy is given by:

𝐸𝑥 =
∑
𝑛

|𝑥[𝑛]|2

which is the same as the square of the L-2 norm of 𝑥[𝑛].

2.4.2 Power

The power of a signal is calculated slightly differently for periodic and aperiodic signals. For discrete, periodic
signals with period, 𝑁 , the power is given by:

𝑃𝑥 =
1

𝑁

𝑁−1∑
𝑛=0

|𝑥[𝑛]|2

For aperiodic discrete signals, the power is given by:

𝑃𝑥 = lim
𝑘→∞

1

2𝑘 + 1

𝑘∑
𝑛=−𝑘
|𝑥[𝑛]|2
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Note:

Periodic signals have infinite energy and finite power, while aperiodic signals with finite energy have zero
power.

Example 2.4.1

Given [𝑥] = 3(−1)𝑛𝑢[𝑛] compute the energy and power. Since 𝑥[𝑛] = 0 for 𝑛 < 0, the signal is aperiodic.

𝐸𝑥 =
∑
𝑛

|𝑥[𝑛]|2

𝐸𝑥 =

∞∑
𝑛=0

|3(−1)𝑛 |2

𝐸𝑥 =

∞∑
𝑛=0

9→∞

Given that the signal is aperiodic, the power is given by:

𝑃𝑥 = lim
𝑘→∞

1

2𝑘 + 1

𝑘∑
𝑛=−𝑘
|𝑥[𝑛]|2

𝑃𝑥 = lim
𝑘→∞

1

2𝑘 + 1

𝑘∑
𝑛=0

9

𝑃𝑥 = lim
𝑘→∞

1

2𝑘 + 19(𝑘 + 1)

𝑃𝑥 = lim
𝑘→∞

9(𝑘 + 1)
2𝑘 + 1 9(𝑘 + 1)

By L’hopital’s rule,

𝑃𝑥 = lim
𝑘→∞

9

2
=

9

2
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Chapter 3

3.1 The Discrete Time Fourier Transform

3.1.1 Derivation of the Discrete Time Fourier Transform

Consider the signal 𝑥𝑠(𝑡) given by:

𝑥𝑠(𝑡) =
∞∑

𝑛=−∞
𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠)

Apply a Fourier transform:

𝐹 [𝑥𝑠(𝑡)] = 𝐹

[ ∞∑
𝑛=−∞

𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠)
]

By the sampling property of the impulse, 𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇𝑠) becomes 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠).

𝐹 [𝑥𝑠(𝑡)] = 𝐹

[ ∞∑
𝑛=−∞

𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠)
]

The sum and 𝑥(𝑡) may be taken out of the Fourier transform:

𝐹 [𝑥𝑠(𝑡)] =
∞∑

𝑛=−∞
𝑥(𝑛𝑇𝑠)𝐹

[
𝛿(𝑡 − 𝑛𝑇𝑠)

]
The Fourier transform of the impulse is unity, and the delay by 𝑛𝑇𝑠 becomes a complex exponential:

𝑋𝑠(Ω) =
∞∑

𝑛=−∞
𝑥[𝑛𝑇𝑠]𝑒−𝑗Ω𝑛𝑇𝑠

If 𝑇𝑠 is unity, then simplification is possible. Converting 𝑥[𝑛𝑇𝑠] to 𝑥[𝑛] yields the discrete time Fourier transform:

𝑋(𝑒−𝑗𝜔) =
∞∑

𝑛=−∞
𝑥[𝑛]𝑒−𝑗𝜔𝑛

Note:

Ω is the continuous angular frequency while 𝜔 is the discrete angular frequency.

Ω𝑇𝑠 = 𝜔

This is a natural extension of the continuous Fourier transform:

𝑋(Ω) =
∞∫

−∞

𝑥(𝑡)𝑒−Ω𝑡𝑑𝑡

𝑋(𝑒 𝑗𝜔 is periodic with a period of 2𝜋.
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Definition 3.1.1: Discrete Time Fourier Transform

𝑋(𝑒 𝑗𝜔) =
∞∑

𝑛=−∞
𝑥[𝑛]𝑒−𝑗𝜔𝑛

Example 3.1.1 (DTFT of the Impulse)

Consider 𝑥[𝑛] = 𝛿[𝑛]. Find the DTFT of 𝑥[𝑛].

𝑋(𝑒 𝑗𝜔) =
∞∑

𝑛=−∞
𝑥[𝑛]𝑒−𝑗𝜔𝑛

𝑋(𝑒 𝑗𝜔) =
∞∑

𝑛=−∞
𝛿[𝑛]𝑒−𝑗𝜔𝑛

The expression in the sum has a non-zero value only at 𝑛 = 0, therefore the sum only has one term.

𝑋(𝑒 𝑗𝜔) = 𝑒−𝑗𝜔(0) = 1

Example 3.1.2 (More Complicated DTFT)

Consider 𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]. Find the DTFT of 𝑥[𝑛].

𝑋(𝑒 𝑗𝜔) =
∞∑

𝑛=−∞
𝑥[𝑛]𝑒−𝑗𝜔𝑛

Since 𝑢[𝑛] only has a non-zero value for 𝑛 ≥ 0, the sum can be simplified to:

𝑋(𝑒 𝑗𝜔) =
∞∑
𝑛=0

𝑎𝑛𝑒−𝑗𝜔𝑛

Since both terms in the sum have 𝑛 in the exponent:

𝑋(𝑒 𝑗𝜔) =
∞∑
𝑛=0

(𝑎𝑒−𝑗𝜔)𝑛

The sum has the form of a geometric series, which can be evaluated by:

∞∑
𝑛=𝑚

=
𝑠𝑚

1 − 𝑠
, |𝑠 | < 1

Since |𝑒−𝑗𝜔 | = 1, |𝑠 | = |𝑎 |. Therefore:

𝐹 [𝑎𝑛𝑢[𝑛]] = 1

1 − 𝑎𝑒−𝑗𝜔
, |𝑎 | < 1

3.1.2 Properties of the Discrete Time Fourier Transform

1. The DTFT is a linear operation.

2. If a signal is delayed or advanced (𝑥[𝑛 − 𝑎]), the DTFT is scaled by 𝑒−𝑗𝜔𝑎 .

3. The DTFT of 𝑛𝑥[𝑛] is 𝑗 𝑑
𝑑𝜔 (𝑋(𝑒 𝑗𝜔))

4. The DTFT of the convolution, 𝑥[𝑛] ∗ ℎ[𝑛], is the same as the product of the DTFT of the two signals.
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Example 3.1.3 (Time Multiplication Property)

Consider 𝑥[𝑛] = 𝑛𝑎𝑛𝑢[𝑛]. Find the DTFT of 𝑥[𝑛]. Since the DTFT of 𝑎𝑛𝑢[𝑛] is known to be 1
1−𝑎𝑒−𝑗𝜔 , by

the time multiplication property of the DTFT, the DTFT of 𝑥[𝑛] is:

𝑋(𝑒 𝑗𝜔) = 𝑗
𝑑

𝑑𝜔

[
1

1 − 𝑎𝑒−𝑗𝜔

]
Note:

If 𝑥[𝑛] is absolutely summable (
∑ |𝑥[𝑛]| < ∞) then the DTFT exists.

3.1.3 Special Cases

In some special cases, the DTFT exists, but the corresponding time domain signal is not absolutely summable.

Example 3.1.4 (Ideal Lowpass Filter)

Consider the transfer function of an ideal lowpass filter, with cutoff frequency, 𝜔𝑐 .
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Chapter 4

The Z-Transform

Recall the Laplace transform is defined as:

𝑋(𝑠) =
∫ ∞

−∞
𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡

where 𝑠 is a complex variable. The analogous transform in the discrete domain is called the Z-transform, which
is given by:

𝑋(𝑧) =
∑
𝑛

𝑥[𝑛]𝑧−𝑛

where 𝑧 is a complex variable. The region of convergence of a Z-transform is the set of all 𝑧 for which the sum
converges.

Example 4.0.1 (Z-Transform of causal finite support signals)

Given a causal, finite support signal, 𝑥[𝑛] =
[
𝑎 𝑏 𝑐 𝑑

]
, 0 ≤ 𝑛 ≤ 3. Find its 𝑧 transform.

𝑋(𝑧) =
3∑

𝑛=0

𝑥[𝑛]𝑧−𝑛

𝑋(𝑧) = 𝑎 + 𝑏𝑧−1 + 𝑐𝑧−2 + 𝑑𝑧−3

The region of convergence is all values of 𝑧 except 𝑧 = 0.

Example 4.0.2 (Z-Transform of anti-causal finite support signals)

Given the finite support, anti-causal signal, 𝑥[𝑛] =
[
𝑎 𝑏 𝑐 𝑑

]
,−4 ≤ 𝑛 ≤ −1.

𝑋(𝑧) =
−1∑

𝑛=−4
𝑥[𝑛]𝑧−𝑛

𝑋(𝑧) = 𝑎𝑧4 + 𝑏𝑧4 + 𝑐𝑧2 + 𝑑𝑧

The region of convergence is all values of 𝑧 except 𝑧 = ∞.

Example 4.0.3 (Z-Transform of causal nor anti-causal signals)

Given the finite support signal, 𝑥[𝑛] =
[
𝑎 𝑏 𝑐 𝑑

]
,−2 ≤ 𝑛 ≤ 1.

𝑋(𝑧) =
1∑

𝑛=−2
𝑥[𝑛]𝑧−𝑛

𝑋(𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 + 𝑑𝑧−1
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The region of convergence is all 𝑧 except 𝑧 = 0 and 𝑧 = ∞

For finite support, discrete signals, the region of convergence is always the entire 𝑧-plane with the possible
exception of 𝑧 = 0 and 𝑧 = ∞.

Example 4.0.4 (Z-Transform of the discrete unit impulse)

Given 𝑥[𝑛] = 𝛿[𝑛]:
𝑋(𝑧) =

∑
𝑛

= 𝛿[𝑛]𝑧−𝑛

𝑋(𝑧) = 1

The region of convergence is the entire 𝑧 plane.

Example 4.0.5 (Z-Transform of infinite support signals)

Given the infinite support signal, 𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]:

𝑋(𝑧) =
∞∑
𝑛=0

𝑎𝑛𝑧−𝑛

The common exponent, 𝑛 can be taken out to put it in the form:

∞∑
𝑛=𝑚

𝑠𝑛 =
𝑠𝑚

1 − 𝑠

where 𝑠 = 𝑎𝑧−1 in this case. This sum will converge as long as |𝑎𝑧−1 | < 1. In simpler terms, the sum will
converge when |𝑧 | > |𝑎 |.

Since 𝑧 is a complex variable, it can be described in a polar form:

𝑧 = 𝑟𝑒 𝑗𝜃

where 𝑟 is the magnitude and 𝜃 is the phase angle.

If a region of convergence (ROC) does not include the unit circle, then its DTFT does not exist except for
special case signals. If the ROC does contain the unit circle, then the DTFT can be found by substituting
𝑧 = 𝑒 𝑗𝜔.

4.1 Z Transform Transfer Functions

Recall that the impulse response of an LTI system completely characterizes the system. It can be used to determine
responses of other systems via convolution, and it is a useful tool in determining the BIBO stability of the system.

Given an impulse response to a discrete LTI system, the Z-transform of the impulse response is called the transfer
function

𝐻(𝑧) = 𝑍[ℎ[𝑛]] =
∑
𝑛

ℎ[𝑛]𝑧−𝑛

An LTI system is causal if ℎ[𝑛] is a causal signal. This is the same as if the ROC of 𝐻(𝑧) includes 𝑧 = ∞. These
conditions are equivalent because the ROC of a Z-transform only contains 𝑧 = ∞ for causal signals.

Additionally, an LTI system is BIBO stable if ℎ[𝑛] is absolutely summable.∑
𝑛

|ℎ[𝑛]| < ∞
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The equivalent condition for 𝐻(𝑧) is the ROC of 𝐻(𝑧) must include the unit circle. These conditions are equivalent
because the DTFT exists when the unit circle is in the ROC, and the DTFT only exists when the signal is
absolutely summable.

Note:

For causal systems only, BIBO stability is achieved if all the poles of 𝐻(𝑧) are inside the unit circle. Since
non-causal systems do not include 𝑧 = ∞ in the ROC, this test will not hold for non-causal systems.

If the impulse response ℎ[𝑛] has finite support, then the output, 𝑦[𝑛], given an input, 𝑥[𝑛], can be found by
convolution.

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] =
𝑁−1∑
𝑘=0

ℎ[𝑘]𝑥[𝑛 − 𝑘]

However, if the impulse response ℎ[𝑛] has infinite support, the output, 𝑦[𝑛], is given by a constant coefficient
difference equation.

𝑁∑
𝑗=0

𝑎[𝑗]𝑦[𝑛 − 𝑗] =
𝑀∑
𝑘=0

𝑏[𝑘]𝑥[𝑛 − 𝑘]

where 𝑎[𝑗] are the constant coefficient of the output, and 𝑏[𝑘] are the constant coefficients of the input.

Example 4.1.1

Given the infinite impulse response:
ℎ[𝑛] = 𝑎𝑛𝑢[𝑛]

The transfer function of the system is:

𝐻(𝑧) = 𝑧

𝑧 − 𝑎

with a ROC of |𝑧 | > |𝑎 |. Since this includes 𝑧 = ∞, the system is causal. If |𝑎 | < 1, then the system is also
BIBO stable.

𝐻(𝑧) = 𝑧

𝑧 − 𝑎
=

𝑌(𝑧)
𝑋(𝑧)

𝑌(𝑧)
𝑋(𝑧) =

1

1 − 𝑎𝑧−1

𝑌(𝑧) − 𝑎𝑧−1𝑌(𝑧) = 𝑋(𝑧)
Taking the inverse Z-transform:

𝑦[𝑛] − 𝑎𝑦[𝑛 − 1] = 𝑥[𝑛]
𝑦[𝑛] = 𝑥[𝑛] + 𝑎𝑦[𝑛 − 1]

Since the output relies on both the input and the previous output, the recursive implementation of the
input-output relationship is used.

Example 4.1.2

Given the impulse response,
ℎ[𝑛] = 𝑛𝑎𝑛𝑢[𝑛]

the corresponding transfer function is

𝐻(𝑧) = 𝑎𝑧

(𝑧 − 𝑎)2

with ROC, |𝑧 | > |𝑎 |. Since the impulse response is causal, the system is causal. Equivalently, since the
ROC includes 𝑧 = ∞, the system is causal. Given this region of convergence, the system is BIBO stable if
and only if |𝑎 | < 1.

𝐻(𝑧) = 𝑎𝑧

(𝑧 − 𝑎)2 =
𝑌(𝑧)
𝑋(𝑧)
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𝐻(𝑧) = 𝑎𝑧

𝑧2 − 2𝑎𝑧 + 𝑎2
=

𝑎𝑧

𝑧2(1 − 2𝑎𝑧−1 + 𝑎2𝑧−2)
𝑎𝑧−1𝑋(𝑧) = 𝑌(𝑧) − 2𝑎𝑧−1𝑌(𝑧) + 𝑎2𝑧−2𝑌(𝑧)

Taking the inverse Z-transform to find the input-output relationship:

𝑥[𝑛 − 1] = 𝑦[𝑛] − 2𝑎𝑦[𝑛 − 1] + 𝑎2𝑦[𝑛 − 2]

𝑦[𝑛] = 𝑥[𝑛 − 1] + 2𝑎𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2]

Example 4.1.3

ℎ[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4]
ℎ[𝑛] =

[
1 1 1 1

]
, 0 ≤ 𝑛 ≤ 3

𝐻(𝑧) =
∑
𝑛

ℎ[𝑛]𝑧−𝑛 = 1 + 𝑧−1 + 𝑧−2 + 𝑧−3

For finite support signals, the Z-transform is the entire Z-plane with the possible exception of 𝑧 = 0 and
𝑧 = ∞. Checking 𝑧 = 0 reveals a pole, but 𝑧 = ∞ works, so the system is causal. All finite support impulse
responses (FIR) are BIBO stable.

𝑦[𝑛] =
3∑

𝑘=0

ℎ[𝑘]𝑥[𝑛 − 𝑘]

𝑦[𝑛] = ℎ[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛 − 1] + ℎ[2]𝑥[𝑛 − 2] + ℎ[3]𝑥[𝑛 − 3]

4.2 The Inverse Z-Transform

Given the causal signal 𝑥[𝑛] = 𝑎𝑛𝑢[𝑛], its Z-transform is 𝑋(𝑧) = 𝑧
𝑧−𝑎 with region of convergence |𝑧 | > |𝑎 |. Given

an anti-causal signal 𝑥[𝑛] − 𝑎𝑛𝑢[−𝑛 − 1], its Z-transform is 𝑋(𝑧) = 𝑧
𝑧−𝑎 with region of convergence |𝑧 | < |𝑎 |.

Consider the following second-order LTI system whose transfer function is given by:

𝐻(𝑧) = 𝑧(𝑧 − 0.2)
(𝑧 − 0.8)(𝑧 − 0.9)

If the system is causal, then the ROC includes ∞, so the ROC must be |𝑧 | > 0.9. In this case the system would
be BIBO stable. However, if the system is anti-causal, then the ROC must include 0 and therefore would be
|𝑧 | < 0.8. In this case, the system would not be BIBO stable. If the system is two-sided, then the ROC would be
0.8 < |𝑧 | < 0.9. In this case the system would also not be BIBO stable.

Find the partial fraction expansion of 𝐻(𝑧)
𝑧 :

𝐻(𝑧)
𝑧

=
𝑧 − 0.2

(𝑧 − 0.8)(𝑧 − 0.9) =
𝐴

𝑧 − 0.9 +
𝐵

𝑧 − 0.8

𝑧 − 0.2 = (𝑧 − 0.8)𝐴 + (𝑧 − 0.9)𝐵
𝐵 = −6, 𝐴 = 7

𝐻(𝑧)
𝑧

=
7

𝑧 − 0.9 −
6

𝑧 − 0.8

𝐻(𝑧) = 7𝑧

𝑧 − 0.9 −
6𝑧

𝑧 − 0.8
Apply the inverse Z-transform on both sides. If the system is causal:

ℎ[𝑛] = 7(0.9)𝑛𝑢[𝑛] − 6(0.8)𝑛𝑢[𝑛]
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If the system is anti-causal:
ℎ[𝑛] = −7(0.9)𝑛𝑢[−𝑛 − 1] + 6(0.8)𝑛𝑢[−𝑛 − 1]

If the system is two-sided:
ℎ[𝑛] = −7(0.9)𝑛𝑢[−𝑛 − 1] − 6(0.8)𝑛𝑢[𝑛]

Note:

For FIR systems, if the Z-transform does not converge at |𝑧 | = 0 or |𝑧 | = ∞, they are not considered poles,
because only IIR systems can have poles.

23



Chapter 5

The Discrete Fourier Transform

The discrete Fourier transform is the sampled DTFT. Since the DTFT is a continuous function, it cannot be
analyzed in the same way as a discrete signal. The N-point DFT is defined as:

𝑋[𝑘] =
𝑁−1∑
𝑛=0

𝑥[𝑛]𝑊 𝑘𝑛
𝑁

where 𝑊 𝑘
𝑁
= 𝑒−𝑗2𝜋𝑘/𝑁 .

Example 5.0.1

Find the N-point DFT of 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 𝑁].

𝑁−1∑
𝑛=0

𝑠𝑛 =

{
1−𝑠𝑁
1−𝑠 𝑠 ≠ 1

𝑁 𝑠 = 1

When 𝑘 = 0:

𝑋[0] =
𝑁−1∑
𝑛=0

(1)𝑛 = 𝑁

When 𝑘 ≠ 0:

𝑋[𝑘] =
1 −𝑊 𝑘𝑁

𝑁

1 −𝑊 𝑘
𝑁

= 0

These points are zero because they correspond to the zero-crossings of the sinc function, which is the
Fourier transform of a unit pulse.

5.1 The Inverse DFT

Example 5.1.1

The 10-point DFT of 𝑥[𝑛] is given as:

𝑋[𝑘] = 2𝛿[𝑘] + 1, 𝑘 ∈ [0, 9] ∩ℤ

Find the 10-point signal 𝑥[𝑛]
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Chapter 6

FIR Filter Design

Consider ℎ[𝑛] with finite support 0 ≤ 𝑛 ≤ 𝑀. The filter is said to have an order 𝑀 with 𝑀+1 taps or coefficients.
FIR systems are always BIBO stable. Focus will be on Type-1 FIR filter, where 𝑀 is even, so the number of taps
is odd, and ℎ[𝑛] is symmetric over the center coefficient ℎ

[
𝑀
2

]
.
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